send-it commited on
Commit
8115816
·
1 Parent(s): 23fd8bf

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 261.13 +/- 23.30
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f59d3efa710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59d3efa7a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59d3efa830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59d3efa8c0>", "_build": "<function ActorCriticPolicy._build at 0x7f59d3efa950>", "forward": "<function ActorCriticPolicy.forward at 0x7f59d3efa9e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59d3efaa70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f59d3efab00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59d3efab90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59d3efac20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59d3efacb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f59d3f48600>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652499040.6506608, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADpoeT7wuPE+JdT6vkq2uL40FU4+cBu0vgAAAAAAAAAAAAiIO1zLfLpIa5K4qqEkNV5QP7tNX6Y3AACAPwAAgD8zqaM8YgkhPiaFIL3g65W+Tk28PEeywjwAAAAAAAAAAM22qjxXVpI/DQ9yPYfH3747N0e8PT3cPQAAAAAAAAAAmj+8vI+WfLo2gfI575/pNGu0RTj8tA25AACAPwAAgD8AHIw7j45Fuv8CkTnm39s0uzlUO9HdqbgAAIA/AACAP5qcqrxwJJk/oGTxvcxIBb+Ms8A8K2cgPAAAAAAAAAAAzXz3vCksG7oV3366bUfQtRd8Abt6gJI5AACAPwAAgD8zq808XFd1ulmGArksaxC0mBI2u0HaFjgAAIA/AACAP7PdDL17bJS6cHvcuZWCaDh6BBK7TU9VOAAAgD8AAIA/mln/uR9FuLnO/0s6T6AEthamLDvtAAW1AACAPwAAgD9TOim+ezT5uGzZs7r3ys82UX2wu0CH0DkAAIA/AACAP7MVXz0pmDO6Zfe9uk3BpLR2yDy6jt/bOQAAgD8AAIA/GuwhPSkwULrqwq27RzWsN13BdzrTRvO2AACAPwAAgD8zhwW8jz5TuqZxrTUaZa0w4hUYOvtO5LQAAIA/AACAP2YG5Dop1DC6CNJsO1XBvDd1iiu7i742ugAAgD8AAIA/gISDPcORB7o9mt62PizUsWzHHjpyOP01AACAPwAAgD/gClW+H91oP7Qwq72NZN6+5IimvorCLTwAAAAAAAAAAABrHL1cv3C64WsuNoY8kjEijRY7IKtTtQAAgD8AAIA/GjIWvRQ2ibquwN+5pzUQNi+XMrtylP04AACAPwAAgD9mxos9Hy2muS1PiDrWxy+5Y5GoOUerlLkAAIA/AACAP43vob048+w9yk1pvjq+f77Q/qe+wGMHuwAAAAAAAAAAmpW4vFKwzLkZvZ+4/50AtKALM7luSLk3AACAPwAAgD/N7HY7/guuPw8LyzxSgM2+5wNUvSlrkL0AAAAAAAAAAGZamDukgHu55UUVuKJFpbIk2oy7NXEvNwAAgD8AAIA/ACj2u/YoCjn+NV06PVWVNfsR5TpxKIO5AACAPwAAgD9mIF0+8EO/P8s1ND8swoa+pfwyPplWHz4AAAAAAAAAAGYey7ukq1y7TsCMOwZjmTzlDIe8fkeDPQAAgD8AAIA/ADQbvMOdJbqGCIs8SRvcOZVW7bp+6bI6AACAPwAAgD/NYDi8KcB0uqZZIztMk0k2yboSutu0OzUAAIA/AACAP2buSzxck1G6Ch51ObzCsTIecii6E46OuAAAgD8AAIA/zUz/OlyLULrFt6U7v0aqONCMszvg/kW6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIayi1F9HmZECUhpRSlIwBbJRN6AOMAXSUR0CS1uzPa+N+dX2UKGgGaAloD0MIPs3Ji0y+YUCUhpRSlGgVTegDaBZHQJLavVVghKV1fZQoaAZoCWgPQwiKOQg6WvxjQJSGlFKUaBVN6ANoFkdAkttG/zreInV9lChoBmgJaA9DCDBinwAKyGJAlIaUUpRoFU3oA2gWR0CS3GO5J9RadX2UKGgGaAloD0MIQUrs2t67XkCUhpRSlGgVTegDaBZHQJLdXdZaFEl1fZQoaAZoCWgPQwgsn+V58ElmQJSGlFKUaBVN6ANoFkdAkuP+jIq9XnV9lChoBmgJaA9DCPyrx30rcmNAlIaUUpRoFU3oA2gWR0CS5S+jua4MdX2UKGgGaAloD0MIgh3/BQKgYECUhpRSlGgVTegDaBZHQJLrZUIcBEN1fZQoaAZoCWgPQwh9WG/UCrFgQJSGlFKUaBVN6ANoFkdAkuvJz90ihXV9lChoBmgJaA9DCNNnB1zXbWRAlIaUUpRoFU3oA2gWR0CS9vABT4tZdX2UKGgGaAloD0MIW1t4XqrWZkCUhpRSlGgVTegDaBZHQJL4XkaMrEt1fZQoaAZoCWgPQwil2NE41FZhQJSGlFKUaBVN6ANoFkdAkvwO7QLNOnV9lChoBmgJaA9DCCgNNQrJ22hAlIaUUpRoFU3oA2gWR0CS/C1QIldDdX2UKGgGaAloD0MIL2zNVl5dZECUhpRSlGgVTegDaBZHQJL8qAz544Z1fZQoaAZoCWgPQwhzgjY5/OViQJSGlFKUaBVN6ANoFkdAkv8diH6/I3V9lChoBmgJaA9DCBBYObRIGWpAlIaUUpRoFU3oA2gWR0CS/8xWT5fudX2UKGgGaAloD0MI3PRnP9LhZ0CUhpRSlGgVTegDaBZHQJMJi2sq8UV1fZQoaAZoCWgPQwiho1Ut6dRIQJSGlFKUaBVL0GgWR0CTDPXQtz0ZdX2UKGgGaAloD0MIQs9m1edsYkCUhpRSlGgVTegDaBZHQJMNK/Yao/B1fZQoaAZoCWgPQwguqdpuAlNnQJSGlFKUaBVN6ANoFkdAkw8ZkPMB63V9lChoBmgJaA9DCJxqLcxCK2pAlIaUUpRoFU3oA2gWR0CTE89b5dnkdX2UKGgGaAloD0MIb0c4LfgDY0CUhpRSlGgVTegDaBZHQJMcfPE87p51fZQoaAZoCWgPQwh5JF6ezppgQJSGlFKUaBVN6ANoFkdAkyOaUaAFxHV9lChoBmgJaA9DCA1TW+og315AlIaUUpRoFU3oA2gWR0CTJY6uGKyfdX2UKGgGaAloD0MIwcdgxaltY0CUhpRSlGgVTegDaBZHQJMmrnuAqd91fZQoaAZoCWgPQwgkgJvFix1nQJSGlFKUaBVN6ANoFkdAkydA71ZkkXV9lChoBmgJaA9DCNR+aydKdWFAlIaUUpRoFU3oA2gWR0CTdQnuiN83dX2UKGgGaAloD0MIfSWQErsRYkCUhpRSlGgVTegDaBZHQJN1RUhmoR91fZQoaAZoCWgPQwgW3A944OFkQJSGlFKUaBVN6ANoFkdAk3Xb9ETg23V9lChoBmgJaA9DCOBNt+yQFWBAlIaUUpRoFU3oA2gWR0CTdlT2FnIydX2UKGgGaAloD0MIdCmuKnvsZ0CUhpRSlGgVTegDaBZHQJN9WRyOrAB1fZQoaAZoCWgPQwi4I5wWvNViQJSGlFKUaBVN6ANoFkdAk4FP7m+0xHV9lChoBmgJaA9DCDBinwCKO0hAlIaUUpRoFUu6aBZHQJOCxqsU7CB1fZQoaAZoCWgPQwiu1R72QrxkQJSGlFKUaBVN6ANoFkdAk4U0SAYpD3V9lChoBmgJaA9DCFsKSPsf62VAlIaUUpRoFU3oA2gWR0CThg2A5JbudX2UKGgGaAloD0MI5lq0AO0bYkCUhpRSlGgVTegDaBZHQJOJX8rI5o51fZQoaAZoCWgPQwh+Uu3TcR1jQJSGlFKUaBVN6ANoFkdAk4nRWtEG7nV9lChoBmgJaA9DCGhBKO9jk2FAlIaUUpRoFU3oA2gWR0CTirAeaKDTdX2UKGgGaAloD0MIDvRQ2wbUZUCUhpRSlGgVTegDaBZHQJOLlC0F8oh1fZQoaAZoCWgPQwhkH2RZMAViQJSGlFKUaBVN6ANoFkdAk5ICiM5wO3V9lChoBmgJaA9DCFhVL79TuWFAlIaUUpRoFU3oA2gWR0CTkzLXL/0edX2UKGgGaAloD0MIp1zhXS5vYUCUhpRSlGgVTegDaBZHQJOZRFYuCf91fZQoaAZoCWgPQwhcdR2qKRBiQJSGlFKUaBVN6ANoFkdAk5mirLhaT3V9lChoBmgJaA9DCHqnAu558XBAlIaUUpRoFU1/A2gWR0CTnz2CNCJGdX2UKGgGaAloD0MIQ3Vz8feFckCUhpRSlGgVTc4BaBZHQJOgc0VJtix1fZQoaAZoCWgPQwiZKhiVVNFmQJSGlFKUaBVN6ANoFkdAk6ROZw4sE3V9lChoBmgJaA9DCOjdWFCYV2dAlIaUUpRoFU3oA2gWR0CTqYMg2ZRbdX2UKGgGaAloD0MIgv+tZMdZX0CUhpRSlGgVTegDaBZHQJOqADp1RtR1fZQoaAZoCWgPQwh9WG/Uiq9oQJSGlFKUaBVN6ANoFkdAk6yRubZvk3V9lChoBmgJaA9DCLQ6OUPxq2BAlIaUUpRoFU3oA2gWR0CTrUB/ZuhsdX2UKGgGaAloD0MIFQMkmsCtYECUhpRSlGgVTegDaBZHQJO3EdGRV6x1fZQoaAZoCWgPQwj19BH4w4xmQJSGlFKUaBVN6ANoFkdAk7qFU2kzoHV9lChoBmgJaA9DCDKuuDgqMF5AlIaUUpRoFU3oA2gWR0CTurpfhMrVdX2UKGgGaAloD0MIMA4uHfMiaECUhpRSlGgVTegDaBZHQJO8qfYjB2x1fZQoaAZoCWgPQwghXAGFejRsQJSGlFKUaBVNOwJoFkdAk8BcifQKKHV9lChoBmgJaA9DCIts5/vpIXFAlIaUUpRoFU06A2gWR0CTwMKp1ie/dX2UKGgGaAloD0MIxhhYx3FXZkCUhpRSlGgVTegDaBZHQJPBI6gdwNt1fZQoaAZoCWgPQwhWKqioev1jQJSGlFKUaBVN6ANoFkdAk8jbAHmig3V9lChoBmgJaA9DCGTmApfHcmFAlIaUUpRoFU3oA2gWR0CTzxoRqXWwdX2UKGgGaAloD0MIs33IWy52Y0CUhpRSlGgVTegDaBZHQJPSZSgoPTZ1fZQoaAZoCWgPQwhpUgq6vTxjQJSGlFKUaBVN6ANoFkdAk9XtHH3lCHV9lChoBmgJaA9DCBHGT+Ne72VAlIaUUpRoFU3oA2gWR0CUIGqIrOJMdX2UKGgGaAloD0MIbAiOy7h4ZECUhpRSlGgVTegDaBZHQJQg4oOQQtl1fZQoaAZoCWgPQwiHF0SkJjRlQJSGlFKUaBVN6ANoFkdAlCfUkB0ZFXV9lChoBmgJaA9DCPvqqkCtaWZAlIaUUpRoFU3oA2gWR0CUK7sLv1DjdX2UKGgGaAloD0MID7bY7bPPZUCUhpRSlGgVTegDaBZHQJQtOH1vl2h1fZQoaAZoCWgPQwhxdmuZjHFlQJSGlFKUaBVN6ANoFkdAlC+dU83dbnV9lChoBmgJaA9DCCtoWmJlrmRAlIaUUpRoFU3oA2gWR0CUMICw8nuzdX2UKGgGaAloD0MIAfc8f9qDZECUhpRSlGgVTegDaBZHQJQ0kWoFV1h1fZQoaAZoCWgPQwitvroqUBRkQJSGlFKUaBVN6ANoFkdAlDYSX2M85nV9lChoBmgJaA9DCIhGdxA7W2dAlIaUUpRoFU3oA2gWR0CUNwvaURnOdX2UKGgGaAloD0MIxr5k48HHY0CUhpRSlGgVTegDaBZHQJQ9jp5eJHl1fZQoaAZoCWgPQwgL8Ui8PGdiQJSGlFKUaBVN6ANoFkdAlD674Ju2qnV9lChoBmgJaA9DCKc/+5GiLmFAlIaUUpRoFU3oA2gWR0CURJIHkcS5dX2UKGgGaAloD0MIpmQ5CSXQZUCUhpRSlGgVTegDaBZHQJRE+lDWsil1fZQoaAZoCWgPQwgoRSv3AkZSQJSGlFKUaBVL1mgWR0CUSXeJYT0ydX2UKGgGaAloD0MI6UXtfhUiZECUhpRSlGgVTegDaBZHQJRKkQ2/BWR1fZQoaAZoCWgPQwigFoOH6SNlQJSGlFKUaBVN6ANoFkdAlEvDOcDr7nV9lChoBmgJaA9DCMtL/if/hWNAlIaUUpRoFU3oA2gWR0CUT59LHuJDdX2UKGgGaAloD0MIRkQxeQOWZkCUhpRSlGgVTegDaBZHQJRUlY/3WWh1fZQoaAZoCWgPQwjWql0TUk1kQJSGlFKUaBVN6ANoFkdAlFUMlw97nnV9lChoBmgJaA9DCJ2E0hdCXmRAlIaUUpRoFU3oA2gWR0CUV18NhE0BdX2UKGgGaAloD0MIiBBXzl7qYUCUhpRSlGgVTegDaBZHQJRYBFQVKwp1fZQoaAZoCWgPQwjUZMbbCohyQJSGlFKUaBVNGQFoFkdAlFikcOskp3V9lChoBmgJaA9DCApLPKBs82NAlIaUUpRoFU3oA2gWR0CUYR7k4m1IdX2UKGgGaAloD0MIlScQdoqpX0CUhpRSlGgVTegDaBZHQJRkc40dilV1fZQoaAZoCWgPQwiFsvD1NcBjQJSGlFKUaBVN6ANoFkdAlGSlkhA4XHV9lChoBmgJaA9DCOJXrOEimWdAlIaUUpRoFU3oA2gWR0CUZn15B1LbdX2UKGgGaAloD0MId/NUh1x4ZkCUhpRSlGgVTegDaBZHQJRqGEg4ffZ1fZQoaAZoCWgPQwjaA63AkNNgQJSGlFKUaBVN6ANoFkdAlGp81CPZI3V9lChoBmgJaA9DCECJz53gvWZAlIaUUpRoFU3oA2gWR0CUat8OTaCddX2UKGgGaAloD0MIRPtYwW+TbkCUhpRSlGgVTagBaBZHQJRsyBClabF1fZQoaAZoCWgPQwhK8IY0KnhMQJSGlFKUaBVLpWgWR0CUcOVSGahIdX2UKGgGaAloD0MIgez17o8GY0CUhpRSlGgVTegDaBZHQJRybVnVXmx1fZQoaAZoCWgPQwifWRKgJvpgQJSGlFKUaBVN6ANoFkdAlHiGYOUdJnV9lChoBmgJaA9DCJ0Te2ifGGdAlIaUUpRoFU3oA2gWR0CUe7epGWledX2UKGgGaAloD0MINDDysiZtUUCUhpRSlGgVS7doFkdAlHu5v1lGw3V9lChoBmgJaA9DCJp63SKw82VAlIaUUpRoFU3oA2gWR0CUfx/lQuVYdX2UKGgGaAloD0MIQWMmUa/zY0CUhpRSlGgVTegDaBZHQJR/uNxVAA11fZQoaAZoCWgPQwh1OSUgJkhlQJSGlFKUaBVN6ANoFkdAlIAuxSpBHHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:438f6ad40098035c59d5e75d3321cc52e6c20733ea00b98ad65d7ae398bee7dd
3
+ size 144810
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f59d3efa710>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f59d3efa7a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f59d3efa830>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f59d3efa8c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f59d3efa950>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f59d3efa9e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f59d3efaa70>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f59d3efab00>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f59d3efab90>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f59d3efac20>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f59d3efacb0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f59d3f48600>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 32,
45
+ "num_timesteps": 1015808,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652499040.6506608,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAADpoeT7wuPE+JdT6vkq2uL40FU4+cBu0vgAAAAAAAAAAAAiIO1zLfLpIa5K4qqEkNV5QP7tNX6Y3AACAPwAAgD8zqaM8YgkhPiaFIL3g65W+Tk28PEeywjwAAAAAAAAAAM22qjxXVpI/DQ9yPYfH3747N0e8PT3cPQAAAAAAAAAAmj+8vI+WfLo2gfI575/pNGu0RTj8tA25AACAPwAAgD8AHIw7j45Fuv8CkTnm39s0uzlUO9HdqbgAAIA/AACAP5qcqrxwJJk/oGTxvcxIBb+Ms8A8K2cgPAAAAAAAAAAAzXz3vCksG7oV3366bUfQtRd8Abt6gJI5AACAPwAAgD8zq808XFd1ulmGArksaxC0mBI2u0HaFjgAAIA/AACAP7PdDL17bJS6cHvcuZWCaDh6BBK7TU9VOAAAgD8AAIA/mln/uR9FuLnO/0s6T6AEthamLDvtAAW1AACAPwAAgD9TOim+ezT5uGzZs7r3ys82UX2wu0CH0DkAAIA/AACAP7MVXz0pmDO6Zfe9uk3BpLR2yDy6jt/bOQAAgD8AAIA/GuwhPSkwULrqwq27RzWsN13BdzrTRvO2AACAPwAAgD8zhwW8jz5TuqZxrTUaZa0w4hUYOvtO5LQAAIA/AACAP2YG5Dop1DC6CNJsO1XBvDd1iiu7i742ugAAgD8AAIA/gISDPcORB7o9mt62PizUsWzHHjpyOP01AACAPwAAgD/gClW+H91oP7Qwq72NZN6+5IimvorCLTwAAAAAAAAAAABrHL1cv3C64WsuNoY8kjEijRY7IKtTtQAAgD8AAIA/GjIWvRQ2ibquwN+5pzUQNi+XMrtylP04AACAPwAAgD9mxos9Hy2muS1PiDrWxy+5Y5GoOUerlLkAAIA/AACAP43vob048+w9yk1pvjq+f77Q/qe+wGMHuwAAAAAAAAAAmpW4vFKwzLkZvZ+4/50AtKALM7luSLk3AACAPwAAgD/N7HY7/guuPw8LyzxSgM2+5wNUvSlrkL0AAAAAAAAAAGZamDukgHu55UUVuKJFpbIk2oy7NXEvNwAAgD8AAIA/ACj2u/YoCjn+NV06PVWVNfsR5TpxKIO5AACAPwAAgD9mIF0+8EO/P8s1ND8swoa+pfwyPplWHz4AAAAAAAAAAGYey7ukq1y7TsCMOwZjmTzlDIe8fkeDPQAAgD8AAIA/ADQbvMOdJbqGCIs8SRvcOZVW7bp+6bI6AACAPwAAgD/NYDi8KcB0uqZZIztMk0k2yboSutu0OzUAAIA/AACAP2buSzxck1G6Ch51ObzCsTIecii6E46OuAAAgD8AAIA/zUz/OlyLULrFt6U7v0aqONCMszvg/kW6AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.015808000000000044,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIayi1F9HmZECUhpRSlIwBbJRN6AOMAXSUR0CS1uzPa+N+dX2UKGgGaAloD0MIPs3Ji0y+YUCUhpRSlGgVTegDaBZHQJLavVVghKV1fZQoaAZoCWgPQwiKOQg6WvxjQJSGlFKUaBVN6ANoFkdAkttG/zreInV9lChoBmgJaA9DCDBinwAKyGJAlIaUUpRoFU3oA2gWR0CS3GO5J9RadX2UKGgGaAloD0MIQUrs2t67XkCUhpRSlGgVTegDaBZHQJLdXdZaFEl1fZQoaAZoCWgPQwgsn+V58ElmQJSGlFKUaBVN6ANoFkdAkuP+jIq9XnV9lChoBmgJaA9DCPyrx30rcmNAlIaUUpRoFU3oA2gWR0CS5S+jua4MdX2UKGgGaAloD0MIgh3/BQKgYECUhpRSlGgVTegDaBZHQJLrZUIcBEN1fZQoaAZoCWgPQwh9WG/UCrFgQJSGlFKUaBVN6ANoFkdAkuvJz90ihXV9lChoBmgJaA9DCNNnB1zXbWRAlIaUUpRoFU3oA2gWR0CS9vABT4tZdX2UKGgGaAloD0MIW1t4XqrWZkCUhpRSlGgVTegDaBZHQJL4XkaMrEt1fZQoaAZoCWgPQwil2NE41FZhQJSGlFKUaBVN6ANoFkdAkvwO7QLNOnV9lChoBmgJaA9DCCgNNQrJ22hAlIaUUpRoFU3oA2gWR0CS/C1QIldDdX2UKGgGaAloD0MIL2zNVl5dZECUhpRSlGgVTegDaBZHQJL8qAz544Z1fZQoaAZoCWgPQwhzgjY5/OViQJSGlFKUaBVN6ANoFkdAkv8diH6/I3V9lChoBmgJaA9DCBBYObRIGWpAlIaUUpRoFU3oA2gWR0CS/8xWT5fudX2UKGgGaAloD0MI3PRnP9LhZ0CUhpRSlGgVTegDaBZHQJMJi2sq8UV1fZQoaAZoCWgPQwiho1Ut6dRIQJSGlFKUaBVL0GgWR0CTDPXQtz0ZdX2UKGgGaAloD0MIQs9m1edsYkCUhpRSlGgVTegDaBZHQJMNK/Yao/B1fZQoaAZoCWgPQwguqdpuAlNnQJSGlFKUaBVN6ANoFkdAkw8ZkPMB63V9lChoBmgJaA9DCJxqLcxCK2pAlIaUUpRoFU3oA2gWR0CTE89b5dnkdX2UKGgGaAloD0MIb0c4LfgDY0CUhpRSlGgVTegDaBZHQJMcfPE87p51fZQoaAZoCWgPQwh5JF6ezppgQJSGlFKUaBVN6ANoFkdAkyOaUaAFxHV9lChoBmgJaA9DCA1TW+og315AlIaUUpRoFU3oA2gWR0CTJY6uGKyfdX2UKGgGaAloD0MIwcdgxaltY0CUhpRSlGgVTegDaBZHQJMmrnuAqd91fZQoaAZoCWgPQwgkgJvFix1nQJSGlFKUaBVN6ANoFkdAkydA71ZkkXV9lChoBmgJaA9DCNR+aydKdWFAlIaUUpRoFU3oA2gWR0CTdQnuiN83dX2UKGgGaAloD0MIfSWQErsRYkCUhpRSlGgVTegDaBZHQJN1RUhmoR91fZQoaAZoCWgPQwgW3A944OFkQJSGlFKUaBVN6ANoFkdAk3Xb9ETg23V9lChoBmgJaA9DCOBNt+yQFWBAlIaUUpRoFU3oA2gWR0CTdlT2FnIydX2UKGgGaAloD0MIdCmuKnvsZ0CUhpRSlGgVTegDaBZHQJN9WRyOrAB1fZQoaAZoCWgPQwi4I5wWvNViQJSGlFKUaBVN6ANoFkdAk4FP7m+0xHV9lChoBmgJaA9DCDBinwCKO0hAlIaUUpRoFUu6aBZHQJOCxqsU7CB1fZQoaAZoCWgPQwiu1R72QrxkQJSGlFKUaBVN6ANoFkdAk4U0SAYpD3V9lChoBmgJaA9DCFsKSPsf62VAlIaUUpRoFU3oA2gWR0CThg2A5JbudX2UKGgGaAloD0MI5lq0AO0bYkCUhpRSlGgVTegDaBZHQJOJX8rI5o51fZQoaAZoCWgPQwh+Uu3TcR1jQJSGlFKUaBVN6ANoFkdAk4nRWtEG7nV9lChoBmgJaA9DCGhBKO9jk2FAlIaUUpRoFU3oA2gWR0CTirAeaKDTdX2UKGgGaAloD0MIDvRQ2wbUZUCUhpRSlGgVTegDaBZHQJOLlC0F8oh1fZQoaAZoCWgPQwhkH2RZMAViQJSGlFKUaBVN6ANoFkdAk5ICiM5wO3V9lChoBmgJaA9DCFhVL79TuWFAlIaUUpRoFU3oA2gWR0CTkzLXL/0edX2UKGgGaAloD0MIp1zhXS5vYUCUhpRSlGgVTegDaBZHQJOZRFYuCf91fZQoaAZoCWgPQwhcdR2qKRBiQJSGlFKUaBVN6ANoFkdAk5mirLhaT3V9lChoBmgJaA9DCHqnAu558XBAlIaUUpRoFU1/A2gWR0CTnz2CNCJGdX2UKGgGaAloD0MIQ3Vz8feFckCUhpRSlGgVTc4BaBZHQJOgc0VJtix1fZQoaAZoCWgPQwiZKhiVVNFmQJSGlFKUaBVN6ANoFkdAk6ROZw4sE3V9lChoBmgJaA9DCOjdWFCYV2dAlIaUUpRoFU3oA2gWR0CTqYMg2ZRbdX2UKGgGaAloD0MIgv+tZMdZX0CUhpRSlGgVTegDaBZHQJOqADp1RtR1fZQoaAZoCWgPQwh9WG/Uiq9oQJSGlFKUaBVN6ANoFkdAk6yRubZvk3V9lChoBmgJaA9DCLQ6OUPxq2BAlIaUUpRoFU3oA2gWR0CTrUB/ZuhsdX2UKGgGaAloD0MIFQMkmsCtYECUhpRSlGgVTegDaBZHQJO3EdGRV6x1fZQoaAZoCWgPQwj19BH4w4xmQJSGlFKUaBVN6ANoFkdAk7qFU2kzoHV9lChoBmgJaA9DCDKuuDgqMF5AlIaUUpRoFU3oA2gWR0CTurpfhMrVdX2UKGgGaAloD0MIMA4uHfMiaECUhpRSlGgVTegDaBZHQJO8qfYjB2x1fZQoaAZoCWgPQwghXAGFejRsQJSGlFKUaBVNOwJoFkdAk8BcifQKKHV9lChoBmgJaA9DCIts5/vpIXFAlIaUUpRoFU06A2gWR0CTwMKp1ie/dX2UKGgGaAloD0MIxhhYx3FXZkCUhpRSlGgVTegDaBZHQJPBI6gdwNt1fZQoaAZoCWgPQwhWKqioev1jQJSGlFKUaBVN6ANoFkdAk8jbAHmig3V9lChoBmgJaA9DCGTmApfHcmFAlIaUUpRoFU3oA2gWR0CTzxoRqXWwdX2UKGgGaAloD0MIs33IWy52Y0CUhpRSlGgVTegDaBZHQJPSZSgoPTZ1fZQoaAZoCWgPQwhpUgq6vTxjQJSGlFKUaBVN6ANoFkdAk9XtHH3lCHV9lChoBmgJaA9DCBHGT+Ne72VAlIaUUpRoFU3oA2gWR0CUIGqIrOJMdX2UKGgGaAloD0MIbAiOy7h4ZECUhpRSlGgVTegDaBZHQJQg4oOQQtl1fZQoaAZoCWgPQwiHF0SkJjRlQJSGlFKUaBVN6ANoFkdAlCfUkB0ZFXV9lChoBmgJaA9DCPvqqkCtaWZAlIaUUpRoFU3oA2gWR0CUK7sLv1DjdX2UKGgGaAloD0MID7bY7bPPZUCUhpRSlGgVTegDaBZHQJQtOH1vl2h1fZQoaAZoCWgPQwhxdmuZjHFlQJSGlFKUaBVN6ANoFkdAlC+dU83dbnV9lChoBmgJaA9DCCtoWmJlrmRAlIaUUpRoFU3oA2gWR0CUMICw8nuzdX2UKGgGaAloD0MIAfc8f9qDZECUhpRSlGgVTegDaBZHQJQ0kWoFV1h1fZQoaAZoCWgPQwitvroqUBRkQJSGlFKUaBVN6ANoFkdAlDYSX2M85nV9lChoBmgJaA9DCIhGdxA7W2dAlIaUUpRoFU3oA2gWR0CUNwvaURnOdX2UKGgGaAloD0MIxr5k48HHY0CUhpRSlGgVTegDaBZHQJQ9jp5eJHl1fZQoaAZoCWgPQwgL8Ui8PGdiQJSGlFKUaBVN6ANoFkdAlD674Ju2qnV9lChoBmgJaA9DCKc/+5GiLmFAlIaUUpRoFU3oA2gWR0CURJIHkcS5dX2UKGgGaAloD0MIpmQ5CSXQZUCUhpRSlGgVTegDaBZHQJRE+lDWsil1fZQoaAZoCWgPQwgoRSv3AkZSQJSGlFKUaBVL1mgWR0CUSXeJYT0ydX2UKGgGaAloD0MI6UXtfhUiZECUhpRSlGgVTegDaBZHQJRKkQ2/BWR1fZQoaAZoCWgPQwigFoOH6SNlQJSGlFKUaBVN6ANoFkdAlEvDOcDr7nV9lChoBmgJaA9DCMtL/if/hWNAlIaUUpRoFU3oA2gWR0CUT59LHuJDdX2UKGgGaAloD0MIRkQxeQOWZkCUhpRSlGgVTegDaBZHQJRUlY/3WWh1fZQoaAZoCWgPQwjWql0TUk1kQJSGlFKUaBVN6ANoFkdAlFUMlw97nnV9lChoBmgJaA9DCJ2E0hdCXmRAlIaUUpRoFU3oA2gWR0CUV18NhE0BdX2UKGgGaAloD0MIiBBXzl7qYUCUhpRSlGgVTegDaBZHQJRYBFQVKwp1fZQoaAZoCWgPQwjUZMbbCohyQJSGlFKUaBVNGQFoFkdAlFikcOskp3V9lChoBmgJaA9DCApLPKBs82NAlIaUUpRoFU3oA2gWR0CUYR7k4m1IdX2UKGgGaAloD0MIlScQdoqpX0CUhpRSlGgVTegDaBZHQJRkc40dilV1fZQoaAZoCWgPQwiFsvD1NcBjQJSGlFKUaBVN6ANoFkdAlGSlkhA4XHV9lChoBmgJaA9DCOJXrOEimWdAlIaUUpRoFU3oA2gWR0CUZn15B1LbdX2UKGgGaAloD0MId/NUh1x4ZkCUhpRSlGgVTegDaBZHQJRqGEg4ffZ1fZQoaAZoCWgPQwjaA63AkNNgQJSGlFKUaBVN6ANoFkdAlGp81CPZI3V9lChoBmgJaA9DCECJz53gvWZAlIaUUpRoFU3oA2gWR0CUat8OTaCddX2UKGgGaAloD0MIRPtYwW+TbkCUhpRSlGgVTagBaBZHQJRsyBClabF1fZQoaAZoCWgPQwhK8IY0KnhMQJSGlFKUaBVLpWgWR0CUcOVSGahIdX2UKGgGaAloD0MIgez17o8GY0CUhpRSlGgVTegDaBZHQJRybVnVXmx1fZQoaAZoCWgPQwifWRKgJvpgQJSGlFKUaBVN6ANoFkdAlHiGYOUdJnV9lChoBmgJaA9DCJ0Te2ifGGdAlIaUUpRoFU3oA2gWR0CUe7epGWledX2UKGgGaAloD0MINDDysiZtUUCUhpRSlGgVS7doFkdAlHu5v1lGw3V9lChoBmgJaA9DCJp63SKw82VAlIaUUpRoFU3oA2gWR0CUfx/lQuVYdX2UKGgGaAloD0MIQWMmUa/zY0CUhpRSlGgVTegDaBZHQJR/uNxVAA11fZQoaAZoCWgPQwh1OSUgJkhlQJSGlFKUaBVN6ANoFkdAlIAuxSpBHHVlLg=="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 124,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 32,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fa20f04184d235d017e81171754963820474f1af82f529f62129c89c209f633
3
+ size 84893
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:421047092394608db8a79406cfd92e2babe258c3a745905832b242368a7c6b31
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f404aa4af237be9e2a806b5db59fa73a40d74148f859222a7801252ca1c563d2
3
+ size 217465
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 261.1308352475257, "std_reward": 23.296576106770743, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-14T03:57:22.131943"}