seniichev commited on
Commit
56dd8a4
1 Parent(s): 2b39916

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -56
README.md CHANGED
@@ -1,49 +1,27 @@
1
- ---
2
- library_name: sentence-transformers
3
- pipeline_tag: sentence-similarity
4
- tags:
5
- - sentence-transformers
6
- - feature-extraction
7
- - sentence-similarity
8
-
9
- ---
10
-
11
- # {MODEL_NAME}
12
-
13
- This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
14
-
15
- <!--- Describe your model here -->
16
-
17
- ## Usage (Sentence-Transformers)
18
-
19
- Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
20
-
21
- ```
22
- pip install -U sentence-transformers
23
- ```
24
-
25
- Then you can use the model like this:
26
-
27
- ```python
28
- from sentence_transformers import SentenceTransformer
29
- sentences = ["This is an example sentence", "Each sentence is converted"]
30
-
31
- model = SentenceTransformer('{MODEL_NAME}')
32
- embeddings = model.encode(sentences)
33
- print(embeddings)
34
- ```
35
-
36
-
37
 
38
  ## Evaluation Results
39
 
40
  <!--- Describe how your model was evaluated -->
 
 
41
 
42
- For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
43
 
44
-
45
- ## Training
46
- The model was trained with the parameters:
47
 
48
  **DataLoader**:
49
 
@@ -65,7 +43,6 @@ Parameters of the fit()-Method:
65
  "epochs": 10,
66
  "evaluation_steps": 100,
67
  "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
68
- "max_grad_norm": 1,
69
  "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
70
  "optimizer_params": {
71
  "lr": 2e-05
@@ -75,18 +52,4 @@ Parameters of the fit()-Method:
75
  "warmup_steps": 790,
76
  "weight_decay": 0.01
77
  }
78
- ```
79
-
80
-
81
- ## Full Model Architecture
82
- ```
83
- SentenceTransformer(
84
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
85
- (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
86
- (2): Normalize()
87
- )
88
- ```
89
-
90
- ## Citing & Authors
91
-
92
- <!--- Describe where people can find more information -->
 
1
+ ---
2
+ library_name: sentence-transformers
3
+ pipeline_tag: sentence-similarity
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ license: mit
8
+ language:
9
+ - en
10
+ - ru
11
+ ---
12
+
13
+ # Multilingual E5 WB
14
+
15
+ Fine-tuned version of default [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) for WB DS School and RAG project.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16
 
17
  ## Evaluation Results
18
 
19
  <!--- Describe how your model was evaluated -->
20
+ As model is used as retriever, goal was to boost its performance at cosine similarity between question and answer.
21
+ With given dataset of QA pairs model performance on EmbeddingSimilarityEvaluator improved from 0.62 to 0.78
22
 
 
23
 
24
+ ## Fine Tuning
 
 
25
 
26
  **DataLoader**:
27
 
 
43
  "epochs": 10,
44
  "evaluation_steps": 100,
45
  "evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
 
46
  "optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
47
  "optimizer_params": {
48
  "lr": 2e-05
 
52
  "warmup_steps": 790,
53
  "weight_decay": 0.01
54
  }
55
+ ```