Jinkin commited on
Commit
83233a9
·
verified ·
1 Parent(s): ce3bbed

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -5
README.md CHANGED
@@ -1059,15 +1059,18 @@ model-index:
1059
 
1060
  **[2024-04-22]**
1061
 
1062
- piccolo-large-zh-v2 目前在C-MTEB榜单取得第一名,领先上一名BERT模型约1.9个点。
 
1063
  piccolo-large-zh-v2 currently ranks first on the C-MTEB list, leading the previous BERT model by about 1.9 points.
1064
 
1065
  ## piccolo-large-zh-v2
1066
 
1067
- piccolo-large-zh-v2 是一个通用embedding模型(中文), 由来自商汤科技的通用模型组完成训练,此次piccolo升级旨在更多地关注通用的下游finetune方式。
 
 
 
 
 
1068
  目前该模型暂时需要通过API来进行访问: https://platform.sensenova.cn/doc?path=/chat/Embeddings/Embeddings.md
1069
- 我们将在近期更新我们的技术报告,同时详细技术细节也将在商汤4.23技术交流日披露。
1070
 
1071
- piccolo-large-zh-v2 is an embedding model (Chinese), trained by the general model group from SenseTime Reserach. This piccolo upgrade aims to pay more attention to the general downstream finetune method.
1072
  Currently, the model needs to be accessed through API: https://platform.sensenova.cn/doc?path=/chat/Embeddings/Embeddings.md
1073
- We will update our technical report in the near future, and detailed technical details will also be disclosed on SenseTime 4.23 Tech Day.
 
1059
 
1060
  **[2024-04-22]**
1061
 
1062
+ piccolo-large-zh-v2 目前在C-MTEB榜单取得第一名,领先上一名BERT模型约1.9个点。
1063
+
1064
  piccolo-large-zh-v2 currently ranks first on the C-MTEB list, leading the previous BERT model by about 1.9 points.
1065
 
1066
  ## piccolo-large-zh-v2
1067
 
1068
+ piccolo-large-zh-v2 是一个通用embedding模型(中文), 由来自商汤科技的通用模型组完成训练,此次piccolo升级旨在更多地关注通用的下游finetune方式。我们将在近期更新我们的技术报告,同时详细技术细节也将在商汤4.23技术交流日披露。
1069
+
1070
+ piccolo-large-zh-v2 is an embedding model (Chinese), trained by the general model group from SenseTime Reserach. This piccolo upgrade aims to pay more attention to the general downstream finetune method.We will update our technical report in the near future, and detailed technical details will also be disclosed on SenseTime 4.23 Tech Day.
1071
+
1072
+
1073
+ ## Usage
1074
  目前该模型暂时需要通过API来进行访问: https://platform.sensenova.cn/doc?path=/chat/Embeddings/Embeddings.md
 
1075
 
 
1076
  Currently, the model needs to be accessed through API: https://platform.sensenova.cn/doc?path=/chat/Embeddings/Embeddings.md