nreimers commited on
Commit
17c0a13
·
1 Parent(s): 9551528

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ - transformers
8
+ - transformers
9
+ - transformers
10
+ - transformers
11
+ - transformers
12
+ - transformers
13
+ - transformers
14
+ - transformers
15
+ - transformers
16
+ - transformers
17
+ - transformers
18
+ - transformers
19
+ - transformers
20
+ - transformers
21
+ - transformers
22
+ - transformers
23
+ - transformers
24
+ - transformers
25
+ - transformers
26
+ - transformers
27
+ - transformers
28
+ - transformers
29
+ - transformers
30
+ - transformers
31
+ - transformers
32
+ - transformers
33
+ - transformers
34
+ - transformers
35
+ - transformers
36
+ - transformers
37
+ - transformers
38
+ - transformers
39
+ ---
40
+
41
+ # sentence-transformers/distilroberta-base-msmarco-v2
42
+
43
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
44
+
45
+
46
+
47
+ ## Usage (Sentence-Transformers)
48
+
49
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
50
+
51
+ ```
52
+ pip install -U sentence-transformers
53
+ ```
54
+
55
+ Then you can use the model like this:
56
+
57
+ ```python
58
+ from sentence_transformers import SentenceTransformer
59
+ sentences = ["This is an example sentence", "Each sentence is converted"]
60
+
61
+ model = SentenceTransformer('sentence-transformers/distilroberta-base-msmarco-v2')
62
+ embeddings = model.encode(sentences)
63
+ print(embeddings)
64
+ ```
65
+
66
+
67
+
68
+ ## Usage (HuggingFace Transformers)
69
+ Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
70
+
71
+ ```python
72
+ from transformers import AutoTokenizer, AutoModel
73
+ import torch
74
+
75
+
76
+ #Mean Pooling - Take attention mask into account for correct averaging
77
+ def mean_pooling(model_output, attention_mask):
78
+ token_embeddings = model_output[0] #First element of model_output contains all token embeddings
79
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
80
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
81
+
82
+
83
+ # Sentences we want sentence embeddings for
84
+ sentences = ['This is an example sentence', 'Each sentence is converted']
85
+
86
+ # Load model from HuggingFace Hub
87
+ tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/distilroberta-base-msmarco-v2')
88
+ model = AutoModel.from_pretrained('sentence-transformers/distilroberta-base-msmarco-v2')
89
+
90
+ # Tokenize sentences
91
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
92
+
93
+ # Compute token embeddings
94
+ with torch.no_grad():
95
+ model_output = model(**encoded_input)
96
+
97
+ # Perform pooling. In this case, max pooling.
98
+ sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
99
+
100
+ print("Sentence embeddings:")
101
+ print(sentence_embeddings)
102
+ ```
103
+
104
+
105
+
106
+ ## Evaluation Results
107
+
108
+
109
+
110
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/distilroberta-base-msmarco-v2)
111
+
112
+
113
+
114
+ ## Full Model Architecture
115
+ ```
116
+ SentenceTransformer(
117
+ (0): Transformer({'max_seq_length': 350, 'do_lower_case': False}) with Transformer model: RobertaModel
118
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
119
+ )
120
+ ```
121
+
122
+ ## Citing & Authors
123
+
124
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
125
+
126
+ If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
127
+ ```bibtex
128
+ @inproceedings{reimers-2019-sentence-bert,
129
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
130
+ author = "Reimers, Nils and Gurevych, Iryna",
131
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
132
+ month = "11",
133
+ year = "2019",
134
+ publisher = "Association for Computational Linguistics",
135
+ url = "http://arxiv.org/abs/1908.10084",
136
+ }
137
+ ```
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "old_models/distilroberta-base-msmarco-v2/0_Transformer",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "gradient_checkpointing": false,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "transformers_version": "4.7.0",
23
+ "type_vocab_size": 1,
24
+ "use_cache": true,
25
+ "vocab_size": 50265
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:287f1deba2b7737731981f72ecba16ad92cea0d8ded916b99ee5808617fa57af
3
+ size 328515953
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 350,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true}}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "errors": "replace", "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "model_max_length": 512, "special_tokens_map_file": "old_models/distilroberta-base-msmarco-v2/0_Transformer/special_tokens_map.json", "name_or_path": "old_models/distilroberta-base-msmarco-v2/0_Transformer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff