nreimers commited on
Commit
c178569
·
1 Parent(s): 9220426

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
2_Dense/config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"in_features": 768, "out_features": 768, "bias": true, "activation_function": "torch.nn.modules.linear.Identity"}
2_Dense/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74b35ef522b16d7ad53b338b3bd6448545446bb0a23a2dbbccdfe3e3baa2ae10
3
+ size 2363431
3_LayerNorm/config.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "dimension": 768
3
+ }
3_LayerNorm/pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:236c1ec98a4ff4a5d3b5d0486159caa175e5b659cbdf009a04dee80f96c07cc4
3
+ size 7143
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ pipeline_tag: sentence-similarity
3
+ tags:
4
+ - sentence-transformers
5
+ - feature-extraction
6
+ - sentence-similarity
7
+ ---
8
+
9
+ # sentence-transformers/msmarco-roberta-base-ance-firstp
10
+
11
+ This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
12
+
13
+
14
+
15
+ ## Usage (Sentence-Transformers)
16
+
17
+ Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
18
+
19
+ ```
20
+ pip install -U sentence-transformers
21
+ ```
22
+
23
+ Then you can use the model like this:
24
+
25
+ ```python
26
+ from sentence_transformers import SentenceTransformer
27
+ sentences = ["This is an example sentence", "Each sentence is converted"]
28
+
29
+ model = SentenceTransformer('sentence-transformers/msmarco-roberta-base-ance-firstp')
30
+ embeddings = model.encode(sentences)
31
+ print(embeddings)
32
+ ```
33
+
34
+
35
+
36
+ ## Evaluation Results
37
+
38
+
39
+
40
+ For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name=sentence-transformers/msmarco-roberta-base-ance-firstp)
41
+
42
+
43
+
44
+ ## Full Model Architecture
45
+ ```
46
+ SentenceTransformer(
47
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: RobertaModel
48
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
49
+ (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.linear.Identity'})
50
+ (3): LayerNorm(
51
+ (norm): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
52
+ )
53
+ )
54
+ ```
55
+
56
+ ## Citing & Authors
57
+
58
+ This model was trained by [sentence-transformers](https://www.sbert.net/).
59
+
60
+ If you find this model helpful, feel free to cite our publication [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084):
61
+ ```bibtex
62
+ @inproceedings{reimers-2019-sentence-bert,
63
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
64
+ author = "Reimers, Nils and Gurevych, Iryna",
65
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
66
+ month = "11",
67
+ year = "2019",
68
+ publisher = "Association for Computational Linguistics",
69
+ url = "http://arxiv.org/abs/1908.10084",
70
+ }
71
+ ```
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "old_models/msmarco-roberta-base-ance-firstp/0_Transformer",
3
+ "_num_labels": 2,
4
+ "architectures": [
5
+ "RobertaModel"
6
+ ],
7
+ "attention_probs_dropout_prob": 0.1,
8
+ "bos_token_id": 0,
9
+ "eos_token_id": 2,
10
+ "eos_token_ids": 0,
11
+ "finetuning_task": "docmsmarco",
12
+ "gradient_checkpointing": false,
13
+ "hidden_act": "gelu",
14
+ "hidden_dropout_prob": 0.1,
15
+ "hidden_size": 768,
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 3072,
18
+ "layer_norm_eps": 1e-05,
19
+ "max_position_embeddings": 514,
20
+ "model_type": "roberta",
21
+ "num_attention_heads": 12,
22
+ "num_hidden_layers": 12,
23
+ "output_past": true,
24
+ "pad_token_id": 1,
25
+ "position_embedding_type": "absolute",
26
+ "transformers_version": "4.7.0",
27
+ "type_vocab_size": 1,
28
+ "use_cache": true,
29
+ "vocab_size": 50265
30
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modules.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Dense",
18
+ "type": "sentence_transformers.models.Dense"
19
+ },
20
+ {
21
+ "idx": 3,
22
+ "name": "3",
23
+ "path": "3_LayerNorm",
24
+ "type": "sentence_transformers.models.LayerNorm"
25
+ }
26
+ ]
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b736c647336c9da98bd068176a2c34ab081519d2b053f4cf2dfcd7ac1344de98
3
+ size 498661169
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": {"content": "<unk>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "errors": "replace", "sep_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "cls_token": {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "do_lower_case": false, "max_len": 512, "special_tokens_map_file": "../other-models/Passage ANCE(FirstP) Checkpoint/special_tokens_map.json", "name_or_path": "old_models/msmarco-roberta-base-ance-firstp/0_Transformer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff