Model Card with TensorFlow example (#1)
Browse files- Model Card with TensorFlow example (11270db7ac69f40e402978945dbf7c802844d885)
Co-authored-by: Joao Gante <[email protected]>
README.md
CHANGED
@@ -46,7 +46,7 @@ for doc, score in doc_score_pairs:
|
|
46 |
```
|
47 |
|
48 |
|
49 |
-
## Usage (HuggingFace Transformers)
|
50 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings.
|
51 |
|
52 |
```python
|
@@ -56,7 +56,7 @@ import torch.nn.functional as F
|
|
56 |
|
57 |
#Mean Pooling - Take average of all tokens
|
58 |
def mean_pooling(model_output, attention_mask):
|
59 |
-
token_embeddings = model_output.last_hidden_state
|
60 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
61 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
62 |
|
@@ -105,6 +105,63 @@ for doc, score in doc_score_pairs:
|
|
105 |
print(score, doc)
|
106 |
```
|
107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
## Technical Details
|
109 |
|
110 |
In the following some technical details how this model must be used:
|
|
|
46 |
```
|
47 |
|
48 |
|
49 |
+
## PyTorch Usage (HuggingFace Transformers)
|
50 |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings.
|
51 |
|
52 |
```python
|
|
|
56 |
|
57 |
#Mean Pooling - Take average of all tokens
|
58 |
def mean_pooling(model_output, attention_mask):
|
59 |
+
token_embeddings = model_output.last_hidden_state
|
60 |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
61 |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
62 |
|
|
|
105 |
print(score, doc)
|
106 |
```
|
107 |
|
108 |
+
## TensorFlow Usage (HuggingFace Transformers)
|
109 |
+
Similarly to the PyTorch example above, to use the model with TensorFlow you pass your input through the transformer model, then you have to apply the correct pooling-operation on-top of the contextualized word embeddings.
|
110 |
+
|
111 |
+
```python
|
112 |
+
from transformers import AutoTokenizer, TFAutoModel
|
113 |
+
import tensorflow as tf
|
114 |
+
|
115 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
116 |
+
def mean_pooling(model_output, attention_mask):
|
117 |
+
token_embeddings = model_output.last_hidden_state
|
118 |
+
input_mask_expanded = tf.cast(tf.tile(tf.expand_dims(attention_mask, -1), [1, 1, token_embeddings.shape[-1]]), tf.float32)
|
119 |
+
return tf.math.reduce_sum(token_embeddings * input_mask_expanded, 1) / tf.math.maximum(tf.math.reduce_sum(input_mask_expanded, 1), 1e-9)
|
120 |
+
|
121 |
+
|
122 |
+
#Encode text
|
123 |
+
def encode(texts):
|
124 |
+
# Tokenize sentences
|
125 |
+
encoded_input = tokenizer(texts, padding=True, truncation=True, return_tensors='tf')
|
126 |
+
|
127 |
+
# Compute token embeddings
|
128 |
+
model_output = model(**encoded_input, return_dict=True)
|
129 |
+
|
130 |
+
# Perform pooling
|
131 |
+
embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
|
132 |
+
|
133 |
+
# Normalize embeddings
|
134 |
+
embeddings = tf.math.l2_normalize(embeddings, axis=1)
|
135 |
+
|
136 |
+
return embeddings
|
137 |
+
|
138 |
+
|
139 |
+
# Sentences we want sentence embeddings for
|
140 |
+
query = "How many people live in London?"
|
141 |
+
docs = ["Around 9 Million people live in London", "London is known for its financial district"]
|
142 |
+
|
143 |
+
# Load model from HuggingFace Hub
|
144 |
+
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
|
145 |
+
model = TFAutoModel.from_pretrained("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
|
146 |
+
|
147 |
+
#Encode query and docs
|
148 |
+
query_emb = encode(query)
|
149 |
+
doc_emb = encode(docs)
|
150 |
+
|
151 |
+
#Compute dot score between query and all document embeddings
|
152 |
+
scores = (query_emb @ tf.transpose(doc_emb))[0].numpy().tolist()
|
153 |
+
|
154 |
+
#Combine docs & scores
|
155 |
+
doc_score_pairs = list(zip(docs, scores))
|
156 |
+
|
157 |
+
#Sort by decreasing score
|
158 |
+
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
|
159 |
+
|
160 |
+
#Output passages & scores
|
161 |
+
for doc, score in doc_score_pairs:
|
162 |
+
print(score, doc)
|
163 |
+
```
|
164 |
+
|
165 |
## Technical Details
|
166 |
|
167 |
In the following some technical details how this model must be used:
|