File size: 3,244 Bytes
b94ae8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Sentence Embeddings Models trained on Paraphrases
This model is from the [sentence-transformers](https://github.com/UKPLab/sentence-transformers)-repository. It was trained on millions of paraphrase sentences. Further details on SBERT can be found in the paper:  [Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks](https://arxiv.org/abs/1908.10084)

This model is the multilingual version of distilroberta-base-paraphrase-v1, trained on parallel data for 50+ languages.

## Usage (HuggingFace Models Repository)

You can use the model directly from the model repository to compute sentence embeddings:
```python
from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1)
    sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9)
    return sum_embeddings / sum_mask



#Sentences we want sentence embeddings for
sentences = ['This framework generates embeddings for each input sentence',
             'Sentences are passed as a list of string.',
             'The quick brown fox jumps over the lazy dog.']

#Load AutoModel from huggingface model repository
tokenizer = AutoTokenizer.from_pretrained("model_name")
model = AutoModel.from_pretrained("model_name")

#Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, max_length=128, return_tensors='pt')

#Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

#Perform pooling. In this case, mean pooling
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
```

## Usage (Sentence-Transformers)
Using this model becomes more convenient when you have [sentence-transformers](https://github.com/UKPLab/sentence-transformers) installed:
```
pip install -U sentence-transformers
```

Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('model_name')
sentences = ['This framework generates embeddings for each input sentence',
    'Sentences are passed as a list of string.', 
    'The quick brown fox jumps over the lazy dog.']
sentence_embeddings = model.encode(sentences)

print("Sentence embeddings:")
print(sentence_embeddings)
```


## Citing & Authors
If you find this model helpful, feel free to cite our publication [Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation](https://arxiv.org/abs/2004.09813):
``` 
@inproceedings{reimers-2020-multilingual-sentence-bert,
    title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2020",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/2004.09813",
}
```