File size: 1,134 Bytes
7f8271d e801f77 7f8271d 6d4d9a3 e801f77 7f8271d 926ad96 e801f77 18911ba 6d4d9a3 e801f77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
inference: false
license: other
datasets:
- ehartford/WizardLM_alpaca_evol_instruct_70k_unfiltered
tags:
- wizardlm
- uncensored
- gptq
- quantization
- auto-gptq
- 7b
- llama
- 4bit
---
# Get Started
This model should use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) so you need to use `auto-gptq`
- `no-act-order` model
- 4bit model quantization
```py
from transformers import AutoTokenizer, pipeline, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizer, StoppingCriteria, PreTrainedTokenizerBase
from auto_gptq import AutoGPTQForCausalLM
model_id = 'seonglae/wizardlm-7b-uncensored-gptq'
tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
model = AutoGPTQForCausalLM.from_quantized(
model_id,
model_basename=model_basename,
trust_remote_code=True,
device='cuda:0',
use_triton=False,
use_safetensors=True,
)
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
temperature=0.5,
top_p=0.95,
max_new_tokens=100,
repetition_penalty=1.15,
)
prompt = "USER: Are you AI?\nASSISTANT:"
pipe(prompt)
``` |