File size: 2,161 Bytes
ada6e7b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
---
tags:
- generated_from_trainer
datasets:
- udpos28
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: parsbert-finetuned-pos
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: udpos28
type: udpos28
args: fa
metrics:
- name: Precision
type: precision
value: 0.9447937270415372
- name: Recall
type: recall
value: 0.9486470191864382
- name: F1
type: f1
value: 0.9467164522465448
- name: Accuracy
type: accuracy
value: 0.9598951738759165
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# parsbert-finetuned-pos
This model is a fine-tuned version of [HooshvareLab/bert-base-parsbert-uncased](https://huggingface.co/HooshvareLab/bert-base-parsbert-uncased) on the udpos28 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1385
- Precision: 0.9448
- Recall: 0.9486
- F1: 0.9467
- Accuracy: 0.9599
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.122 | 1.0 | 3103 | 0.1215 | 0.9363 | 0.9424 | 0.9394 | 0.9561 |
| 0.0735 | 2.0 | 6206 | 0.1297 | 0.9413 | 0.9474 | 0.9443 | 0.9582 |
| 0.0373 | 3.0 | 9309 | 0.1385 | 0.9448 | 0.9486 | 0.9467 | 0.9599 |
### Framework versions
- Transformers 4.18.0
- Pytorch 1.10.0
- Datasets 2.0.0
- Tokenizers 0.11.6
|