--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: sentiment-10Epochs-3 results: [] --- # sentiment-10Epochs-3 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7703 - Accuracy: 0.8568 - F1: 0.8526 - Precision: 0.8787 - Recall: 0.8279 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3637 | 1.0 | 7088 | 0.3830 | 0.8571 | 0.8418 | 0.9429 | 0.7603 | | 0.37 | 2.0 | 14176 | 0.4128 | 0.8676 | 0.8582 | 0.9242 | 0.8010 | | 0.325 | 3.0 | 21264 | 0.4656 | 0.8737 | 0.8664 | 0.9189 | 0.8197 | | 0.2948 | 4.0 | 28352 | 0.4575 | 0.8703 | 0.8652 | 0.9007 | 0.8324 | | 0.3068 | 5.0 | 35440 | 0.4751 | 0.8705 | 0.8653 | 0.9016 | 0.8317 | | 0.2945 | 6.0 | 42528 | 0.5509 | 0.8668 | 0.8618 | 0.8956 | 0.8305 | | 0.2568 | 7.0 | 49616 | 0.6201 | 0.8632 | 0.8567 | 0.8994 | 0.8178 | | 0.2107 | 8.0 | 56704 | 0.6836 | 0.8614 | 0.8576 | 0.8819 | 0.8346 | | 0.1966 | 9.0 | 63792 | 0.7030 | 0.8583 | 0.8532 | 0.8848 | 0.8238 | | 0.1675 | 10.0 | 70880 | 0.7703 | 0.8568 | 0.8526 | 0.8787 | 0.8279 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.10.0 - Datasets 2.0.0 - Tokenizers 0.11.6