File size: 4,105 Bytes
daba9b5 8db363e daba9b5 b606698 daba9b5 7d09e66 daba9b5 7d09e66 8db363e daba9b5 7a6a94e b606698 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
---
language:
- en
license: other
tags:
- supernova
- moth
- llama
- llama-3.1
- llama-3.1-instruct
- llama-3.1-instruct-8b
- llama-3
- llama-3-instruct
- llama-3-instruct-8b
- 8b
- general
- conversational
- chat
- instruct
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- sequelbox/Supernova
pipeline_tag: text-generation
model_type: llama
model-index:
- name: Llama3.1-8B-MOTH
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 52.08
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-MOTH
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 26.45
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-MOTH
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 11.86
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-MOTH
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 2.57
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-MOTH
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 3.79
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-MOTH
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 25.48
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=sequelbox/Llama3.1-8B-MOTH
name: Open LLM Leaderboard
---
- MOTH is a general chat AI.
- MOTH is finetuned on [high quality synthetic data.](https://huggingface.co/datasets/sequelbox/Supernova)
- MOTH is trained on a variety of skills and specialties.
- This version of MOTH is trained on the [Llama 3.1 Instruct format.](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)
- MOTH is also available for [Gemma 2;](https://huggingface.co/sequelbox/gemma-2-9B-MOTH) more MOTH finetunes for other models to follow.
- MOTH has not been manually tested and uses automatically generated datasets.
- Do as you will.
(uses llama 3.1 license available at https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_sequelbox__Llama3.1-8B-MOTH)
| Metric |Value|
|-------------------|----:|
|Avg. |20.37|
|IFEval (0-Shot) |52.08|
|BBH (3-Shot) |26.45|
|MATH Lvl 5 (4-Shot)|11.86|
|GPQA (0-shot) | 2.57|
|MuSR (0-shot) | 3.79|
|MMLU-PRO (5-shot) |25.48|
|