Add new SentenceTransformer model
Browse files- .gitattributes +1 -0
- 0_Transformer/config.json +201 -0
- 0_Transformer/custom_st.py +272 -0
- 0_Transformer/model.safetensors +3 -0
- 0_Transformer/preprocessor_config.json +22 -0
- 0_Transformer/special_tokens_map.json +51 -0
- 0_Transformer/tokenizer.json +3 -0
- 0_Transformer/tokenizer_config.json +61 -0
- README.md +552 -0
- config_sentence_transformers.json +12 -0
- modules.json +14 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
0_Transformer/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
0_Transformer/config.json
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_commit_hash": "4f4251a1ce7d8ead25533a658686f904866a24f2",
|
3 |
+
"_name_or_path": "jinaai/jina-clip-v2",
|
4 |
+
"add_projections": false,
|
5 |
+
"architectures": [
|
6 |
+
"JinaCLIPModel"
|
7 |
+
],
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "jinaai/jina-clip-implementation--configuration_clip.JinaCLIPConfig",
|
10 |
+
"AutoModel": "jinaai/jina-clip-implementation--modeling_clip.JinaCLIPModel"
|
11 |
+
},
|
12 |
+
"initializer_factor": 1.0,
|
13 |
+
"logit_scale_init_value": 2.6592,
|
14 |
+
"matryoshka_dimensions": [
|
15 |
+
32,
|
16 |
+
64,
|
17 |
+
128,
|
18 |
+
256,
|
19 |
+
512,
|
20 |
+
768,
|
21 |
+
1024
|
22 |
+
],
|
23 |
+
"model_type": "jina_clip",
|
24 |
+
"projection_dim": 1024,
|
25 |
+
"text_config": {
|
26 |
+
"_attn_implementation_autoset": false,
|
27 |
+
"_name_or_path": "",
|
28 |
+
"add_cross_attention": false,
|
29 |
+
"architectures": null,
|
30 |
+
"bad_words_ids": null,
|
31 |
+
"begin_suppress_tokens": null,
|
32 |
+
"bos_token_id": null,
|
33 |
+
"chunk_size_feed_forward": 0,
|
34 |
+
"cross_attention_hidden_size": null,
|
35 |
+
"decoder_start_token_id": null,
|
36 |
+
"default_instruction_task": null,
|
37 |
+
"default_lora_task": "retrieval.query",
|
38 |
+
"diversity_penalty": 0.0,
|
39 |
+
"do_sample": false,
|
40 |
+
"early_stopping": false,
|
41 |
+
"embed_dim": 1024,
|
42 |
+
"encoder_no_repeat_ngram_size": 0,
|
43 |
+
"eos_token_id": null,
|
44 |
+
"exponential_decay_length_penalty": null,
|
45 |
+
"finetuning_task": null,
|
46 |
+
"forced_bos_token_id": null,
|
47 |
+
"forced_eos_token_id": null,
|
48 |
+
"hf_model_config_kwargs": {
|
49 |
+
"load_trained_adapters": false,
|
50 |
+
"lora_adaptations": [
|
51 |
+
"retrieval.query"
|
52 |
+
],
|
53 |
+
"lora_alpha": 4,
|
54 |
+
"lora_dropout_p": 0.0,
|
55 |
+
"lora_main_params_trainable": false,
|
56 |
+
"lora_rank": 4,
|
57 |
+
"task_instructions": {
|
58 |
+
"retrieval.query": "Represent the query for retrieving evidence documents: "
|
59 |
+
},
|
60 |
+
"use_flash_attn": false
|
61 |
+
},
|
62 |
+
"hf_model_name_or_path": "jinaai/jina-embeddings-v3",
|
63 |
+
"id2label": {
|
64 |
+
"0": "LABEL_0",
|
65 |
+
"1": "LABEL_1"
|
66 |
+
},
|
67 |
+
"is_decoder": false,
|
68 |
+
"is_encoder_decoder": false,
|
69 |
+
"label2id": {
|
70 |
+
"LABEL_0": 0,
|
71 |
+
"LABEL_1": 1
|
72 |
+
},
|
73 |
+
"length_penalty": 1.0,
|
74 |
+
"max_length": 20,
|
75 |
+
"min_length": 0,
|
76 |
+
"model_type": "jina_clip_text",
|
77 |
+
"no_repeat_ngram_size": 0,
|
78 |
+
"num_beam_groups": 1,
|
79 |
+
"num_beams": 1,
|
80 |
+
"num_return_sequences": 1,
|
81 |
+
"output_attentions": false,
|
82 |
+
"output_hidden_states": false,
|
83 |
+
"output_scores": false,
|
84 |
+
"pad_token_id": null,
|
85 |
+
"pooler_type": "mean_pooler",
|
86 |
+
"prefix": null,
|
87 |
+
"problem_type": null,
|
88 |
+
"proj_bias": false,
|
89 |
+
"proj_type": null,
|
90 |
+
"pruned_heads": {},
|
91 |
+
"remove_invalid_values": false,
|
92 |
+
"repetition_penalty": 1.0,
|
93 |
+
"return_dict": true,
|
94 |
+
"return_dict_in_generate": false,
|
95 |
+
"sep_token_id": null,
|
96 |
+
"suppress_tokens": null,
|
97 |
+
"task_specific_params": null,
|
98 |
+
"temperature": 1.0,
|
99 |
+
"tf_legacy_loss": false,
|
100 |
+
"tie_encoder_decoder": false,
|
101 |
+
"tie_word_embeddings": true,
|
102 |
+
"tokenizer_class": null,
|
103 |
+
"top_k": 50,
|
104 |
+
"top_p": 1.0,
|
105 |
+
"torch_dtype": null,
|
106 |
+
"torchscript": false,
|
107 |
+
"transformers_version": "4.46.3",
|
108 |
+
"typical_p": 1.0,
|
109 |
+
"use_bfloat16": false
|
110 |
+
},
|
111 |
+
"torch_dtype": "float32",
|
112 |
+
"transformers_version": null,
|
113 |
+
"truncate_dim": null,
|
114 |
+
"use_text_flash_attn": false,
|
115 |
+
"use_vision_xformers": false,
|
116 |
+
"vision_config": {
|
117 |
+
"_attn_implementation_autoset": false,
|
118 |
+
"_name_or_path": "",
|
119 |
+
"add_cross_attention": false,
|
120 |
+
"architectures": null,
|
121 |
+
"bad_words_ids": null,
|
122 |
+
"begin_suppress_tokens": null,
|
123 |
+
"bos_token_id": null,
|
124 |
+
"chunk_size_feed_forward": 0,
|
125 |
+
"cross_attention_hidden_size": null,
|
126 |
+
"decoder_start_token_id": null,
|
127 |
+
"diversity_penalty": 0.0,
|
128 |
+
"do_sample": false,
|
129 |
+
"drop_path_rate": 0.0,
|
130 |
+
"early_stopping": false,
|
131 |
+
"embed_dim": 1024,
|
132 |
+
"encoder_no_repeat_ngram_size": 0,
|
133 |
+
"eos_token_id": null,
|
134 |
+
"exponential_decay_length_penalty": null,
|
135 |
+
"finetuning_task": null,
|
136 |
+
"forced_bos_token_id": null,
|
137 |
+
"forced_eos_token_id": null,
|
138 |
+
"fused_layer_norm": false,
|
139 |
+
"head_width": 64,
|
140 |
+
"id2label": {
|
141 |
+
"0": "LABEL_0",
|
142 |
+
"1": "LABEL_1"
|
143 |
+
},
|
144 |
+
"image_size": 512,
|
145 |
+
"intp_freq": true,
|
146 |
+
"is_decoder": false,
|
147 |
+
"is_encoder_decoder": false,
|
148 |
+
"label2id": {
|
149 |
+
"LABEL_0": 0,
|
150 |
+
"LABEL_1": 1
|
151 |
+
},
|
152 |
+
"layers": 24,
|
153 |
+
"length_penalty": 1.0,
|
154 |
+
"ls_init_value": null,
|
155 |
+
"max_length": 20,
|
156 |
+
"min_length": 0,
|
157 |
+
"mlp_ratio": 2.6667,
|
158 |
+
"model_type": "jina_clip_vision",
|
159 |
+
"naive_swiglu": true,
|
160 |
+
"no_repeat_ngram_size": 0,
|
161 |
+
"num_beam_groups": 1,
|
162 |
+
"num_beams": 1,
|
163 |
+
"num_return_sequences": 1,
|
164 |
+
"output_attentions": false,
|
165 |
+
"output_hidden_states": false,
|
166 |
+
"output_scores": false,
|
167 |
+
"pad_token_id": null,
|
168 |
+
"patch_dropout": 0.1,
|
169 |
+
"patch_size": 14,
|
170 |
+
"post_norm": false,
|
171 |
+
"prefix": null,
|
172 |
+
"problem_type": null,
|
173 |
+
"proj_type": null,
|
174 |
+
"pruned_heads": {},
|
175 |
+
"pt_hw_seq_len": 16,
|
176 |
+
"qkv_bias": true,
|
177 |
+
"remove_invalid_values": false,
|
178 |
+
"repetition_penalty": 1.0,
|
179 |
+
"return_dict": true,
|
180 |
+
"return_dict_in_generate": false,
|
181 |
+
"rope_embeddings": true,
|
182 |
+
"sep_token_id": null,
|
183 |
+
"subln": true,
|
184 |
+
"suppress_tokens": null,
|
185 |
+
"task_specific_params": null,
|
186 |
+
"temperature": 1.0,
|
187 |
+
"tf_legacy_loss": false,
|
188 |
+
"tie_encoder_decoder": false,
|
189 |
+
"tie_word_embeddings": true,
|
190 |
+
"tokenizer_class": null,
|
191 |
+
"top_k": 50,
|
192 |
+
"top_p": 1.0,
|
193 |
+
"torch_dtype": null,
|
194 |
+
"torchscript": false,
|
195 |
+
"transformers_version": "4.46.3",
|
196 |
+
"typical_p": 1.0,
|
197 |
+
"use_bfloat16": false,
|
198 |
+
"width": 1024,
|
199 |
+
"x_attention": false
|
200 |
+
}
|
201 |
+
}
|
0_Transformer/custom_st.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
from io import BytesIO
|
5 |
+
from typing import Any, Dict, List, Literal, Optional, Union
|
6 |
+
|
7 |
+
import requests
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
from torch import nn
|
11 |
+
from transformers import AutoConfig, AutoImageProcessor, AutoModel, AutoTokenizer
|
12 |
+
|
13 |
+
|
14 |
+
class Transformer(nn.Module):
|
15 |
+
def __init__(
|
16 |
+
self,
|
17 |
+
model_name_or_path: str = 'jinaai/jina-clip-v2',
|
18 |
+
tokenizer_name_or_path: Optional[str] = None,
|
19 |
+
image_processor_name_or_path: Optional[str] = None,
|
20 |
+
max_seq_length: Optional[int] = None,
|
21 |
+
config_args: Optional[Dict[str, Any]] = None,
|
22 |
+
model_args: Optional[Dict[str, Any]] = None,
|
23 |
+
tokenizer_args: Optional[Dict[str, Any]] = None,
|
24 |
+
image_processor_args: Optional[Dict[str, Any]] = None,
|
25 |
+
assume_text_inputs: bool = False,
|
26 |
+
cache_dir: Optional[str] = None,
|
27 |
+
backend: Literal['torch', 'onnx', 'openvino'] = 'torch',
|
28 |
+
**_,
|
29 |
+
) -> None:
|
30 |
+
"""
|
31 |
+
Creates a custom SentenceTransformer module that uses `jinai/jina-clip-v2` to
|
32 |
+
map sentences/images to embeddings
|
33 |
+
|
34 |
+
Args:
|
35 |
+
model_name_or_path (str, optional): If it is a filepath on disc, it loads
|
36 |
+
the model from that path. If it is not a path, tries to construct a
|
37 |
+
model from the Hugging Face Hub with that name. Defaults to
|
38 |
+
'jinaai/jina-clip-v2'
|
39 |
+
tokenizer_name_or_path (str, optional): If it is a filepath on disc, it
|
40 |
+
loads the tokenizer from that path. If it is not a path, tries to
|
41 |
+
construct a tokenizer from the Hugging Face Hub with that name.
|
42 |
+
If `None` it is automatically set to the value of `model_name_or_path`
|
43 |
+
image_processor_name_or_path (str, optional): If it is a filepath on disc,
|
44 |
+
it loads the image processor from that path. If it is not a path, tries
|
45 |
+
to construct an image processor from the Hugging Face Hub with that
|
46 |
+
name. If `None` it is automatically set to the value of
|
47 |
+
`model_name_or_path`
|
48 |
+
max_seq_length (int, optional): The maximum sequence length of the model.
|
49 |
+
If not provided, will be inferred from model or tokenizer
|
50 |
+
config_args (Dict[str, Any], optional): Additional model configuration
|
51 |
+
parameters to be passed to the Hugging Face Transformers config
|
52 |
+
model_args (Dict[str, Any], optional): Additional model configuration
|
53 |
+
parameters to be passed to the Hugging Face Transformers model
|
54 |
+
tokenizer_args (Dict[str, Any], optional): Additional tokenizer
|
55 |
+
configuration parameters to be passed to the Hugging Face Transformers
|
56 |
+
tokenizer
|
57 |
+
image_processor_args (Dict[str, Any], optional): Additional image processor
|
58 |
+
configuration parameters to be passed to the Hugging Face Transformers
|
59 |
+
image processor
|
60 |
+
assume_text_inputs (bool, optional): If set to `True`, all inputs are
|
61 |
+
treated as texts. Defaults to `False`
|
62 |
+
cache_dir (str, optional): The Hugging Face Hub cache directory
|
63 |
+
backend (str, optional): Computational backend, only 'torch' is supported
|
64 |
+
|
65 |
+
Example:
|
66 |
+
::
|
67 |
+
|
68 |
+
from sentence_transformers import SentenceTransformer
|
69 |
+
|
70 |
+
model = SentenceTransformer(
|
71 |
+
'jinaai/jina-clip-v2', trust_remote_code=True
|
72 |
+
)
|
73 |
+
sentences_or_images = [
|
74 |
+
"The weather is lovely today.",
|
75 |
+
"It's so sunny outside!",
|
76 |
+
"/path/to/stadium.jpg",
|
77 |
+
]
|
78 |
+
embeddings = model.encode(sentences_or_images)
|
79 |
+
print(embeddings.shape)
|
80 |
+
# (3, 1024)
|
81 |
+
|
82 |
+
# Get the similarity scores between all inputs
|
83 |
+
similarities = model.similarity(embeddings, embeddings)
|
84 |
+
print(similarities)
|
85 |
+
# tensor([[1.0000, 0.6817, 0.0492],
|
86 |
+
# [0.6817, 1.0000, 0.0421],
|
87 |
+
# [0.0492, 0.0421, 1.0000]])
|
88 |
+
"""
|
89 |
+
super(Transformer, self).__init__()
|
90 |
+
if backend != 'torch':
|
91 |
+
raise ValueError(
|
92 |
+
f'Backend \'{backend}\' is not supported, please use \'torch\' instead'
|
93 |
+
)
|
94 |
+
|
95 |
+
config_kwargs = config_args or {}
|
96 |
+
model_kwargs = model_args or {}
|
97 |
+
tokenizer_kwargs = tokenizer_args or {}
|
98 |
+
image_processor_kwargs = {
|
99 |
+
'token': model_kwargs.get('token', None),
|
100 |
+
'trust_remote_code': model_kwargs.get('trust_remote_code', False),
|
101 |
+
'revision': model_kwargs.get('revision', None),
|
102 |
+
'local_files_only': model_kwargs.get('local_files_only', None),
|
103 |
+
}
|
104 |
+
image_processor_kwargs.update(image_processor_args or {})
|
105 |
+
|
106 |
+
config = AutoConfig.from_pretrained(
|
107 |
+
model_name_or_path, cache_dir=cache_dir, **config_kwargs
|
108 |
+
)
|
109 |
+
self.model = AutoModel.from_pretrained(
|
110 |
+
model_name_or_path, config=config, cache_dir=cache_dir, **model_kwargs
|
111 |
+
)
|
112 |
+
if max_seq_length is not None and 'model_max_length' not in tokenizer_kwargs:
|
113 |
+
tokenizer_kwargs['model_max_length'] = max_seq_length
|
114 |
+
|
115 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
116 |
+
tokenizer_name_or_path or model_name_or_path,
|
117 |
+
cache_dir=cache_dir,
|
118 |
+
**tokenizer_kwargs,
|
119 |
+
)
|
120 |
+
self.image_processor = AutoImageProcessor.from_pretrained(
|
121 |
+
image_processor_name_or_path or model_name_or_path,
|
122 |
+
cache_dir=cache_dir,
|
123 |
+
**image_processor_kwargs,
|
124 |
+
)
|
125 |
+
self.assume_text_inputs = assume_text_inputs
|
126 |
+
|
127 |
+
# No max_seq_length set. Try to infer from model
|
128 |
+
if max_seq_length is None:
|
129 |
+
if (
|
130 |
+
hasattr(self.model, 'config')
|
131 |
+
and hasattr(self.model.config, 'max_position_embeddings')
|
132 |
+
and hasattr(self.tokenizer, 'model_max_length')
|
133 |
+
):
|
134 |
+
max_seq_length = min(
|
135 |
+
self.model.config.max_position_embeddings,
|
136 |
+
self.tokenizer.model_max_length,
|
137 |
+
)
|
138 |
+
self.max_seq_length = max_seq_length
|
139 |
+
if tokenizer_name_or_path is not None:
|
140 |
+
self.model.config.tokenizer_class = self.tokenizer.__class__.__name__
|
141 |
+
|
142 |
+
@staticmethod
|
143 |
+
def _decode_data_image(data_image_str: str) -> Image.Image:
|
144 |
+
header, data = data_image_str.split(',', 1)
|
145 |
+
image_data = base64.b64decode(data)
|
146 |
+
return Image.open(BytesIO(image_data))
|
147 |
+
|
148 |
+
def tokenize(
|
149 |
+
self, texts: List[Union[str, Image.Image]], padding: Union[str, bool] = True
|
150 |
+
) -> Dict[str, torch.Tensor]:
|
151 |
+
"""
|
152 |
+
Encodes input samples. Text samples are tokenized. Image URLs, image data
|
153 |
+
buffers and PIL images are passed through the image processor.
|
154 |
+
"""
|
155 |
+
_images = []
|
156 |
+
_texts = []
|
157 |
+
_image_or_text_descriptors = []
|
158 |
+
|
159 |
+
if self.assume_text_inputs:
|
160 |
+
for sample in texts:
|
161 |
+
if isinstance(sample, str):
|
162 |
+
_texts.append(sample)
|
163 |
+
_image_or_text_descriptors.append(1)
|
164 |
+
else:
|
165 |
+
for sample in texts:
|
166 |
+
if isinstance(sample, str):
|
167 |
+
if sample.startswith('http'):
|
168 |
+
try:
|
169 |
+
response = requests.get(sample)
|
170 |
+
_images.append(
|
171 |
+
Image.open(BytesIO(response.content)).convert('RGB')
|
172 |
+
)
|
173 |
+
_image_or_text_descriptors.append(0)
|
174 |
+
except Exception as e:
|
175 |
+
_ = str(e)
|
176 |
+
_texts.append(sample)
|
177 |
+
_image_or_text_descriptors.append(1)
|
178 |
+
elif sample.startswith('data:image/'):
|
179 |
+
_images.append(self._decode_data_image(sample).convert('RGB'))
|
180 |
+
_image_or_text_descriptors.append(0)
|
181 |
+
else:
|
182 |
+
try:
|
183 |
+
_images.append(Image.open(sample).convert('RGB'))
|
184 |
+
_image_or_text_descriptors.append(0)
|
185 |
+
except Exception as e:
|
186 |
+
_ = str(e)
|
187 |
+
_texts.append(sample)
|
188 |
+
_image_or_text_descriptors.append(1)
|
189 |
+
elif isinstance(sample, Image.Image):
|
190 |
+
_images.append(sample.convert('RGB'))
|
191 |
+
_image_or_text_descriptors.append(0)
|
192 |
+
|
193 |
+
encoding = {}
|
194 |
+
if len(_texts):
|
195 |
+
encoding['input_ids'] = self.tokenizer(
|
196 |
+
_texts,
|
197 |
+
padding=padding,
|
198 |
+
truncation='longest_first',
|
199 |
+
return_tensors='pt',
|
200 |
+
max_length=self.max_seq_length,
|
201 |
+
).input_ids
|
202 |
+
|
203 |
+
if len(_images):
|
204 |
+
encoding['pixel_values'] = self.image_processor(
|
205 |
+
_images, return_tensors='pt'
|
206 |
+
).pixel_values
|
207 |
+
|
208 |
+
encoding['image_text_info'] = _image_or_text_descriptors
|
209 |
+
return encoding
|
210 |
+
|
211 |
+
def forward(self, features: Dict[str, torch.Tensor]) -> Dict[str, torch.Tensor]:
|
212 |
+
image_embeddings = []
|
213 |
+
text_embeddings = []
|
214 |
+
|
215 |
+
if 'pixel_values' in features:
|
216 |
+
image_embeddings = self.model.get_image_features(features['pixel_values'])
|
217 |
+
if 'input_ids' in features:
|
218 |
+
text_embeddings = self.model.get_text_features(features['input_ids'])
|
219 |
+
|
220 |
+
sentence_embedding = []
|
221 |
+
image_features = iter(image_embeddings)
|
222 |
+
text_features = iter(text_embeddings)
|
223 |
+
for _, _input_type in enumerate(features['image_text_info']):
|
224 |
+
if _input_type == 0:
|
225 |
+
sentence_embedding.append(next(image_features))
|
226 |
+
else:
|
227 |
+
sentence_embedding.append(next(text_features))
|
228 |
+
|
229 |
+
features['sentence_embedding'] = torch.stack(sentence_embedding).float()
|
230 |
+
return features
|
231 |
+
|
232 |
+
def save(self, output_path: str, safe_serialization: bool = True) -> None:
|
233 |
+
self.model.save_pretrained(output_path, safe_serialization=safe_serialization)
|
234 |
+
self.tokenizer.save_pretrained(output_path)
|
235 |
+
self.image_processor.save_pretrained(output_path)
|
236 |
+
|
237 |
+
@staticmethod
|
238 |
+
def load(input_path: str) -> 'Transformer':
|
239 |
+
# Old classes used other config names than 'sentence_bert_config.json'
|
240 |
+
for config_name in [
|
241 |
+
'sentence_bert_config.json',
|
242 |
+
'sentence_roberta_config.json',
|
243 |
+
'sentence_distilbert_config.json',
|
244 |
+
'sentence_camembert_config.json',
|
245 |
+
'sentence_albert_config.json',
|
246 |
+
'sentence_xlm-roberta_config.json',
|
247 |
+
'sentence_xlnet_config.json',
|
248 |
+
]:
|
249 |
+
sbert_config_path = os.path.join(input_path, config_name)
|
250 |
+
if os.path.exists(sbert_config_path):
|
251 |
+
break
|
252 |
+
|
253 |
+
with open(sbert_config_path) as fIn:
|
254 |
+
config = json.load(fIn)
|
255 |
+
|
256 |
+
# Don't allow configs to set trust_remote_code
|
257 |
+
if 'config_kwargs' in config and 'trust_remote_code' in config['config_kwargs']:
|
258 |
+
config['config_kwargs'].pop('trust_remote_code')
|
259 |
+
if 'model_kwargs' in config and 'trust_remote_code' in config['model_kwargs']:
|
260 |
+
config['model_kwargs'].pop('trust_remote_code')
|
261 |
+
if (
|
262 |
+
'tokenizer_kwargs' in config
|
263 |
+
and 'trust_remote_code' in config['tokenizer_kwargs']
|
264 |
+
):
|
265 |
+
config['tokenizer_kwargs'].pop('trust_remote_code')
|
266 |
+
if (
|
267 |
+
'image_processor_kwargs' in config
|
268 |
+
and 'trust_remote_code' in config['image_processor_kwargs']
|
269 |
+
):
|
270 |
+
config['image_processor_kwargs'].pop('trust_remote_code')
|
271 |
+
|
272 |
+
return Transformer(model_name_or_path=input_path, **config)
|
0_Transformer/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58e5dff44bee390193eeb733f543008b6f2fb5779c58073881785b03097788e9
|
3 |
+
size 3461246364
|
0_Transformer/preprocessor_config.json
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"auto_map": {
|
3 |
+
"AutoImageProcessor": "jinaai/jina-clip-implementation--processing_clip.JinaCLIPImageProcessor",
|
4 |
+
"AutoProcessor": "jinaai/jina-clip-implementation--processing_clip.JinaCLIPProcessor"
|
5 |
+
},
|
6 |
+
"fill_color": 0,
|
7 |
+
"image_processor_type": "JinaCLIPImageProcessor",
|
8 |
+
"interpolation": "bicubic",
|
9 |
+
"mean": [
|
10 |
+
0.48145466,
|
11 |
+
0.4578275,
|
12 |
+
0.40821073
|
13 |
+
],
|
14 |
+
"processor_class": "JinaCLIPProcessor",
|
15 |
+
"resize_mode": "shortest",
|
16 |
+
"size": 512,
|
17 |
+
"std": [
|
18 |
+
0.26862954,
|
19 |
+
0.26130258,
|
20 |
+
0.27577711
|
21 |
+
]
|
22 |
+
}
|
0_Transformer/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
0_Transformer/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e19cd8c08f528b481e909f73dbd1fd62b1e8b1117579ba205e477801237f9e0
|
3 |
+
size 17082988
|
0_Transformer/tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 77,
|
50 |
+
"model_max_length": 8194,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"stride": 0,
|
57 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
58 |
+
"truncation_side": "right",
|
59 |
+
"truncation_strategy": "longest_first",
|
60 |
+
"unk_token": "<unk>"
|
61 |
+
}
|
README.md
ADDED
@@ -0,0 +1,552 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: jinaai/jina-clip-v2
|
3 |
+
library_name: sentence-transformers
|
4 |
+
metrics:
|
5 |
+
- pearson_cosine
|
6 |
+
- spearman_cosine
|
7 |
+
pipeline_tag: sentence-similarity
|
8 |
+
tags:
|
9 |
+
- sentence-transformers
|
10 |
+
- sentence-similarity
|
11 |
+
- feature-extraction
|
12 |
+
- generated_from_trainer
|
13 |
+
- dataset_size:63802
|
14 |
+
- loss:CoSENTLoss
|
15 |
+
widget:
|
16 |
+
- source_sentence: машинка детская самоходная бибикар желтый
|
17 |
+
sentences:
|
18 |
+
- 'машинка детская красная бибикар '
|
19 |
+
- моторное масло alpine dx1 5w 30 5л 0101662
|
20 |
+
- 'спинбайк schwinn ic7 '
|
21 |
+
- source_sentence: 'велосипед stels saber 20 фиолетовый '
|
22 |
+
sentences:
|
23 |
+
- 'детские спортивные комплексы '
|
24 |
+
- 'велосипед bmx stels saber 20 v010 2020 '
|
25 |
+
- 50218 кабель ugreen hd132 hdmi zinc alloy optical fiber cable черный 40m
|
26 |
+
- source_sentence: гидравличесские прессы
|
27 |
+
sentences:
|
28 |
+
- пресс гидравлический ручной механизмом
|
29 |
+
- ракетка для настольного тенниса fora 7
|
30 |
+
- 'объектив panasonic 20mm f1 7 asph ii h h020ae k '
|
31 |
+
- source_sentence: 'бокс пластиковый монтажной платой щмп п 300х200х130 мм ip65 proxima
|
32 |
+
ящики щитки шкафы '
|
33 |
+
sentences:
|
34 |
+
- батарейный отсек для 4xаа открытый проволочные выводы разъем dcx2 1 battery holder
|
35 |
+
4xaa 6v dc
|
36 |
+
- 'bugera bc15 '
|
37 |
+
- 'бокс пластиковый монтажной платой щмп п 500х350х190 мм ip65 proxima ящики щитки
|
38 |
+
шкафы '
|
39 |
+
- source_sentence: 'honor watch gs pro black '
|
40 |
+
sentences:
|
41 |
+
- 'honor watch gs pro white '
|
42 |
+
- трансформер pituso carlo hb gy 06 lemon
|
43 |
+
- 'электровелосипед колхозник volten greenline 500w '
|
44 |
+
model-index:
|
45 |
+
- name: SentenceTransformer based on jinaai/jina-clip-v2
|
46 |
+
results:
|
47 |
+
- task:
|
48 |
+
type: semantic-similarity
|
49 |
+
name: Semantic Similarity
|
50 |
+
dataset:
|
51 |
+
name: example dev
|
52 |
+
type: example-dev
|
53 |
+
metrics:
|
54 |
+
- type: pearson_cosine
|
55 |
+
value: 0.46018545926876964
|
56 |
+
name: Pearson Cosine
|
57 |
+
- type: spearman_cosine
|
58 |
+
value: 0.4873837299726027
|
59 |
+
name: Spearman Cosine
|
60 |
+
---
|
61 |
+
|
62 |
+
# SentenceTransformer based on jinaai/jina-clip-v2
|
63 |
+
|
64 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-clip-v2](https://huggingface.co/jinaai/jina-clip-v2). It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
65 |
+
|
66 |
+
## Model Details
|
67 |
+
|
68 |
+
### Model Description
|
69 |
+
- **Model Type:** Sentence Transformer
|
70 |
+
- **Base model:** [jinaai/jina-clip-v2](https://huggingface.co/jinaai/jina-clip-v2) <!-- at revision 4f4251a1ce7d8ead25533a658686f904866a24f2 -->
|
71 |
+
- **Maximum Sequence Length:** None tokens
|
72 |
+
- **Output Dimensionality:** None dimensions
|
73 |
+
- **Similarity Function:** Cosine Similarity
|
74 |
+
<!-- - **Training Dataset:** Unknown -->
|
75 |
+
<!-- - **Language:** Unknown -->
|
76 |
+
<!-- - **License:** Unknown -->
|
77 |
+
|
78 |
+
### Model Sources
|
79 |
+
|
80 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
81 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
82 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
83 |
+
|
84 |
+
### Full Model Architecture
|
85 |
+
|
86 |
+
```
|
87 |
+
SentenceTransformer(
|
88 |
+
(transformer): Transformer(
|
89 |
+
(model): JinaCLIPModel(
|
90 |
+
(text_model): HFTextEncoder(
|
91 |
+
(transformer): XLMRobertaLoRA(
|
92 |
+
(roberta): XLMRobertaModel(
|
93 |
+
(embeddings): XLMRobertaEmbeddings(
|
94 |
+
(word_embeddings): ParametrizedEmbedding(
|
95 |
+
250002, 1024, padding_idx=1
|
96 |
+
(parametrizations): ModuleDict(
|
97 |
+
(weight): ParametrizationList(
|
98 |
+
(0): LoRAParametrization()
|
99 |
+
)
|
100 |
+
)
|
101 |
+
)
|
102 |
+
(token_type_embeddings): ParametrizedEmbedding(
|
103 |
+
1, 1024
|
104 |
+
(parametrizations): ModuleDict(
|
105 |
+
(weight): ParametrizationList(
|
106 |
+
(0): LoRAParametrization()
|
107 |
+
)
|
108 |
+
)
|
109 |
+
)
|
110 |
+
)
|
111 |
+
(emb_drop): Dropout(p=0.1, inplace=False)
|
112 |
+
(emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
113 |
+
(encoder): XLMRobertaEncoder(
|
114 |
+
(layers): ModuleList(
|
115 |
+
(0-23): 24 x Block(
|
116 |
+
(mixer): MHA(
|
117 |
+
(rotary_emb): RotaryEmbedding()
|
118 |
+
(Wqkv): ParametrizedLinearResidual(
|
119 |
+
in_features=1024, out_features=3072, bias=True
|
120 |
+
(parametrizations): ModuleDict(
|
121 |
+
(weight): ParametrizationList(
|
122 |
+
(0): LoRAParametrization()
|
123 |
+
)
|
124 |
+
)
|
125 |
+
)
|
126 |
+
(inner_attn): SelfAttention(
|
127 |
+
(drop): Dropout(p=0.1, inplace=False)
|
128 |
+
)
|
129 |
+
(inner_cross_attn): CrossAttention(
|
130 |
+
(drop): Dropout(p=0.1, inplace=False)
|
131 |
+
)
|
132 |
+
(out_proj): ParametrizedLinear(
|
133 |
+
in_features=1024, out_features=1024, bias=True
|
134 |
+
(parametrizations): ModuleDict(
|
135 |
+
(weight): ParametrizationList(
|
136 |
+
(0): LoRAParametrization()
|
137 |
+
)
|
138 |
+
)
|
139 |
+
)
|
140 |
+
)
|
141 |
+
(dropout1): Dropout(p=0.1, inplace=False)
|
142 |
+
(drop_path1): StochasticDepth(p=0.0, mode=row)
|
143 |
+
(norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
144 |
+
(mlp): Mlp(
|
145 |
+
(fc1): ParametrizedLinear(
|
146 |
+
in_features=1024, out_features=4096, bias=True
|
147 |
+
(parametrizations): ModuleDict(
|
148 |
+
(weight): ParametrizationList(
|
149 |
+
(0): LoRAParametrization()
|
150 |
+
)
|
151 |
+
)
|
152 |
+
)
|
153 |
+
(fc2): ParametrizedLinear(
|
154 |
+
in_features=4096, out_features=1024, bias=True
|
155 |
+
(parametrizations): ModuleDict(
|
156 |
+
(weight): ParametrizationList(
|
157 |
+
(0): LoRAParametrization()
|
158 |
+
)
|
159 |
+
)
|
160 |
+
)
|
161 |
+
)
|
162 |
+
(dropout2): Dropout(p=0.1, inplace=False)
|
163 |
+
(drop_path2): StochasticDepth(p=0.0, mode=row)
|
164 |
+
(norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
165 |
+
)
|
166 |
+
)
|
167 |
+
)
|
168 |
+
)
|
169 |
+
)
|
170 |
+
(pooler): MeanPooler()
|
171 |
+
(proj): Identity()
|
172 |
+
)
|
173 |
+
(vision_model): EVAVisionTransformer(
|
174 |
+
(patch_embed): PatchEmbed(
|
175 |
+
(proj): Conv2d(3, 1024, kernel_size=(14, 14), stride=(14, 14))
|
176 |
+
)
|
177 |
+
(pos_drop): Dropout(p=0.0, inplace=False)
|
178 |
+
(rope): VisionRotaryEmbeddingFast()
|
179 |
+
(blocks): ModuleList(
|
180 |
+
(0-23): 24 x Block(
|
181 |
+
(norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
|
182 |
+
(attn): Attention(
|
183 |
+
(q_proj): Linear(in_features=1024, out_features=1024, bias=False)
|
184 |
+
(k_proj): Linear(in_features=1024, out_features=1024, bias=False)
|
185 |
+
(v_proj): Linear(in_features=1024, out_features=1024, bias=False)
|
186 |
+
(attn_drop): Dropout(p=0.0, inplace=False)
|
187 |
+
(inner_attn_ln): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
|
188 |
+
(proj): Linear(in_features=1024, out_features=1024, bias=True)
|
189 |
+
(proj_drop): Dropout(p=0.0, inplace=False)
|
190 |
+
(rope): VisionRotaryEmbeddingFast()
|
191 |
+
)
|
192 |
+
(drop_path): Identity()
|
193 |
+
(norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
|
194 |
+
(mlp): SwiGLU(
|
195 |
+
(w1): Linear(in_features=1024, out_features=2730, bias=True)
|
196 |
+
(w2): Linear(in_features=1024, out_features=2730, bias=True)
|
197 |
+
(act): SiLU()
|
198 |
+
(ffn_ln): LayerNorm((2730,), eps=1e-06, elementwise_affine=True)
|
199 |
+
(w3): Linear(in_features=2730, out_features=1024, bias=True)
|
200 |
+
(drop): Dropout(p=0.0, inplace=False)
|
201 |
+
)
|
202 |
+
)
|
203 |
+
)
|
204 |
+
(norm): LayerNorm((1024,), eps=1e-06, elementwise_affine=True)
|
205 |
+
(head): Identity()
|
206 |
+
(patch_dropout): PatchDropout()
|
207 |
+
)
|
208 |
+
(visual_projection): Identity()
|
209 |
+
(text_projection): Identity()
|
210 |
+
)
|
211 |
+
)
|
212 |
+
(normalizer): Normalize()
|
213 |
+
)
|
214 |
+
```
|
215 |
+
|
216 |
+
## Usage
|
217 |
+
|
218 |
+
### Direct Usage (Sentence Transformers)
|
219 |
+
|
220 |
+
First install the Sentence Transformers library:
|
221 |
+
|
222 |
+
```bash
|
223 |
+
pip install -U sentence-transformers
|
224 |
+
```
|
225 |
+
|
226 |
+
Then you can load this model and run inference.
|
227 |
+
```python
|
228 |
+
from sentence_transformers import SentenceTransformer
|
229 |
+
|
230 |
+
# Download from the 🤗 Hub
|
231 |
+
model = SentenceTransformer("seregadgl/t12")
|
232 |
+
# Run inference
|
233 |
+
sentences = [
|
234 |
+
'honor watch gs pro black ',
|
235 |
+
'honor watch gs pro white ',
|
236 |
+
'трансформер pituso carlo hb gy 06 lemon',
|
237 |
+
]
|
238 |
+
embeddings = model.encode(sentences)
|
239 |
+
print(embeddings.shape)
|
240 |
+
# [3, 1024]
|
241 |
+
|
242 |
+
# Get the similarity scores for the embeddings
|
243 |
+
similarities = model.similarity(embeddings, embeddings)
|
244 |
+
print(similarities.shape)
|
245 |
+
# [3, 3]
|
246 |
+
```
|
247 |
+
|
248 |
+
<!--
|
249 |
+
### Direct Usage (Transformers)
|
250 |
+
|
251 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
252 |
+
|
253 |
+
</details>
|
254 |
+
-->
|
255 |
+
|
256 |
+
<!--
|
257 |
+
### Downstream Usage (Sentence Transformers)
|
258 |
+
|
259 |
+
You can finetune this model on your own dataset.
|
260 |
+
|
261 |
+
<details><summary>Click to expand</summary>
|
262 |
+
|
263 |
+
</details>
|
264 |
+
-->
|
265 |
+
|
266 |
+
<!--
|
267 |
+
### Out-of-Scope Use
|
268 |
+
|
269 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
270 |
+
-->
|
271 |
+
|
272 |
+
## Evaluation
|
273 |
+
|
274 |
+
### Metrics
|
275 |
+
|
276 |
+
#### Semantic Similarity
|
277 |
+
|
278 |
+
* Dataset: `example-dev`
|
279 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
280 |
+
|
281 |
+
| Metric | Value |
|
282 |
+
|:--------------------|:-----------|
|
283 |
+
| pearson_cosine | 0.4602 |
|
284 |
+
| **spearman_cosine** | **0.4874** |
|
285 |
+
|
286 |
+
<!--
|
287 |
+
## Bias, Risks and Limitations
|
288 |
+
|
289 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
290 |
+
-->
|
291 |
+
|
292 |
+
<!--
|
293 |
+
### Recommendations
|
294 |
+
|
295 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
296 |
+
-->
|
297 |
+
|
298 |
+
## Training Details
|
299 |
+
|
300 |
+
### Training Dataset
|
301 |
+
|
302 |
+
#### Unnamed Dataset
|
303 |
+
|
304 |
+
|
305 |
+
* Size: 63,802 training samples
|
306 |
+
* Columns: <code>doc</code>, <code>candidate</code>, and <code>label</code>
|
307 |
+
* Approximate statistics based on the first 1000 samples:
|
308 |
+
| | doc | candidate | label |
|
309 |
+
|:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------|
|
310 |
+
| type | string | string | int |
|
311 |
+
| details | <ul><li>min: 5 characters</li><li>mean: 40.56 characters</li><li>max: 115 characters</li></ul> | <ul><li>min: 4 characters</li><li>mean: 40.11 characters</li><li>max: 115 characters</li></ul> | <ul><li>0: ~85.20%</li><li>1: ~14.80%</li></ul> |
|
312 |
+
* Samples:
|
313 |
+
| doc | candidate | label |
|
314 |
+
|:-------------------------------------------------------|:-----------------------------------------------------------------------|:---------------|
|
315 |
+
| <code>массажер xiaomi massage gun eu bhr5608eu </code> | <code>перкуссионный массажер xiaomi massage gun mini bhr6083gl </code> | <code>0</code> |
|
316 |
+
| <code>безударная дрель ingco ed50028 </code> | <code>ударная дрель ingco id211002 </code> | <code>0</code> |
|
317 |
+
| <code>жидкость old smuggler 30мл 20мг </code> | <code>жидкость old smuggler salt 30ml marlboro 20mg</code> | <code>0</code> |
|
318 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
319 |
+
```json
|
320 |
+
{
|
321 |
+
"scale": 20.0,
|
322 |
+
"similarity_fct": "pairwise_cos_sim"
|
323 |
+
}
|
324 |
+
```
|
325 |
+
|
326 |
+
### Evaluation Dataset
|
327 |
+
|
328 |
+
#### Unnamed Dataset
|
329 |
+
|
330 |
+
|
331 |
+
* Size: 7,090 evaluation samples
|
332 |
+
* Columns: <code>doc</code>, <code>candidate</code>, and <code>label</code>
|
333 |
+
* Approximate statistics based on the first 1000 samples:
|
334 |
+
| | doc | candidate | label |
|
335 |
+
|:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------|
|
336 |
+
| type | string | string | int |
|
337 |
+
| details | <ul><li>min: 4 characters</li><li>mean: 40.68 characters</li><li>max: 198 characters</li></ul> | <ul><li>min: 5 characters</li><li>mean: 39.92 characters</li><li>max: 178 characters</li></ul> | <ul><li>0: ~84.20%</li><li>1: ~15.80%</li></ul> |
|
338 |
+
* Samples:
|
339 |
+
| doc | candidate | label |
|
340 |
+
|:--------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:---------------|
|
341 |
+
| <code>круглое пляжное парео селфи коврик пляжная подстилка пляжное покрывало пляжный коврик пироженко </code> | <code>круглое п��яжное парео селфи коврик пляжная подстилка пляжное покрывало пляжный коврик клубника </code> | <code>0</code> |
|
342 |
+
| <code>аккумулятор батарея для ноутбука asus g751 </code> | <code>аккумулятор батарея для ноутбука asus g75 series</code> | <code>0</code> |
|
343 |
+
| <code>миксер bosch mfq3520 mfq 3520 </code> | <code>миксер bosch mfq 4020 </code> | <code>0</code> |
|
344 |
+
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
345 |
+
```json
|
346 |
+
{
|
347 |
+
"scale": 20.0,
|
348 |
+
"similarity_fct": "pairwise_cos_sim"
|
349 |
+
}
|
350 |
+
```
|
351 |
+
|
352 |
+
### Training Hyperparameters
|
353 |
+
#### Non-Default Hyperparameters
|
354 |
+
|
355 |
+
- `eval_strategy`: steps
|
356 |
+
- `per_device_train_batch_size`: 16
|
357 |
+
- `per_device_eval_batch_size`: 16
|
358 |
+
- `learning_rate`: 2e-05
|
359 |
+
- `num_train_epochs`: 1
|
360 |
+
- `lr_scheduler_type`: cosine
|
361 |
+
- `warmup_ratio`: 0.1
|
362 |
+
- `load_best_model_at_end`: True
|
363 |
+
- `batch_sampler`: no_duplicates
|
364 |
+
|
365 |
+
#### All Hyperparameters
|
366 |
+
<details><summary>Click to expand</summary>
|
367 |
+
|
368 |
+
- `overwrite_output_dir`: False
|
369 |
+
- `do_predict`: False
|
370 |
+
- `eval_strategy`: steps
|
371 |
+
- `prediction_loss_only`: True
|
372 |
+
- `per_device_train_batch_size`: 16
|
373 |
+
- `per_device_eval_batch_size`: 16
|
374 |
+
- `per_gpu_train_batch_size`: None
|
375 |
+
- `per_gpu_eval_batch_size`: None
|
376 |
+
- `gradient_accumulation_steps`: 1
|
377 |
+
- `eval_accumulation_steps`: None
|
378 |
+
- `torch_empty_cache_steps`: None
|
379 |
+
- `learning_rate`: 2e-05
|
380 |
+
- `weight_decay`: 0.0
|
381 |
+
- `adam_beta1`: 0.9
|
382 |
+
- `adam_beta2`: 0.999
|
383 |
+
- `adam_epsilon`: 1e-08
|
384 |
+
- `max_grad_norm`: 1.0
|
385 |
+
- `num_train_epochs`: 1
|
386 |
+
- `max_steps`: -1
|
387 |
+
- `lr_scheduler_type`: cosine
|
388 |
+
- `lr_scheduler_kwargs`: {}
|
389 |
+
- `warmup_ratio`: 0.1
|
390 |
+
- `warmup_steps`: 0
|
391 |
+
- `log_level`: passive
|
392 |
+
- `log_level_replica`: warning
|
393 |
+
- `log_on_each_node`: True
|
394 |
+
- `logging_nan_inf_filter`: True
|
395 |
+
- `save_safetensors`: True
|
396 |
+
- `save_on_each_node`: False
|
397 |
+
- `save_only_model`: False
|
398 |
+
- `restore_callback_states_from_checkpoint`: False
|
399 |
+
- `no_cuda`: False
|
400 |
+
- `use_cpu`: False
|
401 |
+
- `use_mps_device`: False
|
402 |
+
- `seed`: 42
|
403 |
+
- `data_seed`: None
|
404 |
+
- `jit_mode_eval`: False
|
405 |
+
- `use_ipex`: False
|
406 |
+
- `bf16`: False
|
407 |
+
- `fp16`: False
|
408 |
+
- `fp16_opt_level`: O1
|
409 |
+
- `half_precision_backend`: auto
|
410 |
+
- `bf16_full_eval`: False
|
411 |
+
- `fp16_full_eval`: False
|
412 |
+
- `tf32`: None
|
413 |
+
- `local_rank`: 0
|
414 |
+
- `ddp_backend`: None
|
415 |
+
- `tpu_num_cores`: None
|
416 |
+
- `tpu_metrics_debug`: False
|
417 |
+
- `debug`: []
|
418 |
+
- `dataloader_drop_last`: False
|
419 |
+
- `dataloader_num_workers`: 0
|
420 |
+
- `dataloader_prefetch_factor`: None
|
421 |
+
- `past_index`: -1
|
422 |
+
- `disable_tqdm`: False
|
423 |
+
- `remove_unused_columns`: True
|
424 |
+
- `label_names`: None
|
425 |
+
- `load_best_model_at_end`: True
|
426 |
+
- `ignore_data_skip`: False
|
427 |
+
- `fsdp`: []
|
428 |
+
- `fsdp_min_num_params`: 0
|
429 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
430 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
431 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
432 |
+
- `deepspeed`: None
|
433 |
+
- `label_smoothing_factor`: 0.0
|
434 |
+
- `optim`: adamw_torch
|
435 |
+
- `optim_args`: None
|
436 |
+
- `adafactor`: False
|
437 |
+
- `group_by_length`: False
|
438 |
+
- `length_column_name`: length
|
439 |
+
- `ddp_find_unused_parameters`: None
|
440 |
+
- `ddp_bucket_cap_mb`: None
|
441 |
+
- `ddp_broadcast_buffers`: False
|
442 |
+
- `dataloader_pin_memory`: True
|
443 |
+
- `dataloader_persistent_workers`: False
|
444 |
+
- `skip_memory_metrics`: True
|
445 |
+
- `use_legacy_prediction_loop`: False
|
446 |
+
- `push_to_hub`: False
|
447 |
+
- `resume_from_checkpoint`: None
|
448 |
+
- `hub_model_id`: None
|
449 |
+
- `hub_strategy`: every_save
|
450 |
+
- `hub_private_repo`: False
|
451 |
+
- `hub_always_push`: False
|
452 |
+
- `gradient_checkpointing`: False
|
453 |
+
- `gradient_checkpointing_kwargs`: None
|
454 |
+
- `include_inputs_for_metrics`: False
|
455 |
+
- `include_for_metrics`: []
|
456 |
+
- `eval_do_concat_batches`: True
|
457 |
+
- `fp16_backend`: auto
|
458 |
+
- `push_to_hub_model_id`: None
|
459 |
+
- `push_to_hub_organization`: None
|
460 |
+
- `mp_parameters`:
|
461 |
+
- `auto_find_batch_size`: False
|
462 |
+
- `full_determinism`: False
|
463 |
+
- `torchdynamo`: None
|
464 |
+
- `ray_scope`: last
|
465 |
+
- `ddp_timeout`: 1800
|
466 |
+
- `torch_compile`: False
|
467 |
+
- `torch_compile_backend`: None
|
468 |
+
- `torch_compile_mode`: None
|
469 |
+
- `dispatch_batches`: None
|
470 |
+
- `split_batches`: None
|
471 |
+
- `include_tokens_per_second`: False
|
472 |
+
- `include_num_input_tokens_seen`: False
|
473 |
+
- `neftune_noise_alpha`: None
|
474 |
+
- `optim_target_modules`: None
|
475 |
+
- `batch_eval_metrics`: False
|
476 |
+
- `eval_on_start`: False
|
477 |
+
- `use_liger_kernel`: False
|
478 |
+
- `eval_use_gather_object`: False
|
479 |
+
- `average_tokens_across_devices`: False
|
480 |
+
- `prompts`: None
|
481 |
+
- `batch_sampler`: no_duplicates
|
482 |
+
- `multi_dataset_batch_sampler`: proportional
|
483 |
+
|
484 |
+
</details>
|
485 |
+
|
486 |
+
### Training Logs
|
487 |
+
| Epoch | Step | Training Loss | Validation Loss | example-dev_spearman_cosine |
|
488 |
+
|:------:|:----:|:-------------:|:---------------:|:---------------------------:|
|
489 |
+
| 0 | 0 | - | - | 0.0849 |
|
490 |
+
| 0.1254 | 500 | 3.7498 | 3.0315 | 0.3797 |
|
491 |
+
| 0.2508 | 1000 | 2.7653 | 2.7538 | 0.4508 |
|
492 |
+
| 0.3761 | 1500 | 2.5938 | 2.7853 | 0.4689 |
|
493 |
+
| 0.5015 | 2000 | 2.6425 | 2.6761 | 0.4800 |
|
494 |
+
| 0.6269 | 2500 | 2.6859 | 2.6341 | 0.4840 |
|
495 |
+
| 0.7523 | 3000 | 2.5805 | 2.6350 | 0.4855 |
|
496 |
+
| 0.8776 | 3500 | 2.7247 | 2.6087 | 0.4874 |
|
497 |
+
|
498 |
+
|
499 |
+
### Framework Versions
|
500 |
+
- Python: 3.10.14
|
501 |
+
- Sentence Transformers: 3.3.1
|
502 |
+
- Transformers: 4.46.3
|
503 |
+
- PyTorch: 2.4.0
|
504 |
+
- Accelerate: 0.34.2
|
505 |
+
- Datasets: 3.0.1
|
506 |
+
- Tokenizers: 0.20.0
|
507 |
+
|
508 |
+
## Citation
|
509 |
+
|
510 |
+
### BibTeX
|
511 |
+
|
512 |
+
#### Sentence Transformers
|
513 |
+
```bibtex
|
514 |
+
@inproceedings{reimers-2019-sentence-bert,
|
515 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
516 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
517 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
518 |
+
month = "11",
|
519 |
+
year = "2019",
|
520 |
+
publisher = "Association for Computational Linguistics",
|
521 |
+
url = "https://arxiv.org/abs/1908.10084",
|
522 |
+
}
|
523 |
+
```
|
524 |
+
|
525 |
+
#### CoSENTLoss
|
526 |
+
```bibtex
|
527 |
+
@online{kexuefm-8847,
|
528 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
529 |
+
author={Su Jianlin},
|
530 |
+
year={2022},
|
531 |
+
month={Jan},
|
532 |
+
url={https://kexue.fm/archives/8847},
|
533 |
+
}
|
534 |
+
```
|
535 |
+
|
536 |
+
<!--
|
537 |
+
## Glossary
|
538 |
+
|
539 |
+
*Clearly define terms in order to be accessible across audiences.*
|
540 |
+
-->
|
541 |
+
|
542 |
+
<!--
|
543 |
+
## Model Card Authors
|
544 |
+
|
545 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
546 |
+
-->
|
547 |
+
|
548 |
+
<!--
|
549 |
+
## Model Card Contact
|
550 |
+
|
551 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
552 |
+
-->
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.46.3",
|
5 |
+
"pytorch": "2.4.0"
|
6 |
+
},
|
7 |
+
"prompts": {
|
8 |
+
"retrieval.query": "Represent the query for retrieving evidence documents: "
|
9 |
+
},
|
10 |
+
"default_prompt_name": null,
|
11 |
+
"similarity_fn_name": "cosine"
|
12 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "transformer",
|
5 |
+
"path": "0_Transformer",
|
6 |
+
"type": "custom_st.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "normalizer",
|
11 |
+
"path": "1_Normalize",
|
12 |
+
"type": "sentence_transformers.models.Normalize"
|
13 |
+
}
|
14 |
+
]
|