--- base_model: jinaai/jina-clip-v2 library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:63802 - loss:CoSENTLoss widget: - source_sentence: машинка детская самоходная бибикар желтый sentences: - 'машинка детская красная бибикар ' - моторное масло alpine dx1 5w 30 5л 0101662 - 'спинбайк schwinn ic7 ' - source_sentence: 'велосипед stels saber 20 фиолетовый ' sentences: - 'детские спортивные комплексы ' - 'велосипед bmx stels saber 20 v010 2020 ' - 50218 кабель ugreen hd132 hdmi zinc alloy optical fiber cable черный 40m - source_sentence: гидравличесские прессы sentences: - пресс гидравлический ручной механизмом - ракетка для настольного тенниса fora 7 - 'объектив panasonic 20mm f1 7 asph ii h h020ae k ' - source_sentence: 'бокс пластиковый монтажной платой щмп п 300х200х130 мм ip65 proxima ящики щитки шкафы ' sentences: - батарейный отсек для 4xаа открытый проволочные выводы разъем dcx2 1 battery holder 4xaa 6v dc - 'bugera bc15 ' - 'бокс пластиковый монтажной платой щмп п 500х350х190 мм ip65 proxima ящики щитки шкафы ' - source_sentence: 'honor watch gs pro black ' sentences: - 'honor watch gs pro white ' - трансформер pituso carlo hb gy 06 lemon - 'электровелосипед колхозник volten greenline 500w ' model-index: - name: SentenceTransformer based on jinaai/jina-clip-v2 results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: example dev type: example-dev metrics: - type: pearson_cosine value: 0.46018545926876964 name: Pearson Cosine - type: spearman_cosine value: 0.4873837299726027 name: Spearman Cosine --- # SentenceTransformer based on jinaai/jina-clip-v2 This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [jinaai/jina-clip-v2](https://huggingface.co/jinaai/jina-clip-v2). It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [jinaai/jina-clip-v2](https://huggingface.co/jinaai/jina-clip-v2) - **Maximum Sequence Length:** None tokens - **Output Dimensionality:** None dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (transformer): Transformer( (model): JinaCLIPModel( (text_model): HFTextEncoder( (transformer): XLMRobertaLoRA( (roberta): XLMRobertaModel( (embeddings): XLMRobertaEmbeddings( (word_embeddings): ParametrizedEmbedding( 250002, 1024, padding_idx=1 (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (token_type_embeddings): ParametrizedEmbedding( 1, 1024 (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) ) (emb_drop): Dropout(p=0.1, inplace=False) (emb_ln): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (encoder): XLMRobertaEncoder( (layers): ModuleList( (0-23): 24 x Block( (mixer): MHA( (rotary_emb): RotaryEmbedding() (Wqkv): ParametrizedLinearResidual( in_features=1024, out_features=3072, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (inner_attn): SelfAttention( (drop): Dropout(p=0.1, inplace=False) ) (inner_cross_attn): CrossAttention( (drop): Dropout(p=0.1, inplace=False) ) (out_proj): ParametrizedLinear( in_features=1024, out_features=1024, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) ) (dropout1): Dropout(p=0.1, inplace=False) (drop_path1): StochasticDepth(p=0.0, mode=row) (norm1): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) (mlp): Mlp( (fc1): ParametrizedLinear( in_features=1024, out_features=4096, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) (fc2): ParametrizedLinear( in_features=4096, out_features=1024, bias=True (parametrizations): ModuleDict( (weight): ParametrizationList( (0): LoRAParametrization() ) ) ) ) (dropout2): Dropout(p=0.1, inplace=False) (drop_path2): StochasticDepth(p=0.0, mode=row) (norm2): LayerNorm((1024,), eps=1e-05, elementwise_affine=True) ) ) ) ) ) (pooler): MeanPooler() (proj): Identity() ) (vision_model): EVAVisionTransformer( (patch_embed): PatchEmbed( (proj): Conv2d(3, 1024, kernel_size=(14, 14), stride=(14, 14)) ) (pos_drop): Dropout(p=0.0, inplace=False) (rope): VisionRotaryEmbeddingFast() (blocks): ModuleList( (0-23): 24 x Block( (norm1): LayerNorm((1024,), eps=1e-06, elementwise_affine=True) (attn): Attention( (q_proj): Linear(in_features=1024, out_features=1024, bias=False) (k_proj): Linear(in_features=1024, out_features=1024, bias=False) (v_proj): Linear(in_features=1024, out_features=1024, bias=False) (attn_drop): Dropout(p=0.0, inplace=False) (inner_attn_ln): LayerNorm((1024,), eps=1e-06, elementwise_affine=True) (proj): Linear(in_features=1024, out_features=1024, bias=True) (proj_drop): Dropout(p=0.0, inplace=False) (rope): VisionRotaryEmbeddingFast() ) (drop_path): Identity() (norm2): LayerNorm((1024,), eps=1e-06, elementwise_affine=True) (mlp): SwiGLU( (w1): Linear(in_features=1024, out_features=2730, bias=True) (w2): Linear(in_features=1024, out_features=2730, bias=True) (act): SiLU() (ffn_ln): LayerNorm((2730,), eps=1e-06, elementwise_affine=True) (w3): Linear(in_features=2730, out_features=1024, bias=True) (drop): Dropout(p=0.0, inplace=False) ) ) ) (norm): LayerNorm((1024,), eps=1e-06, elementwise_affine=True) (head): Identity() (patch_dropout): PatchDropout() ) (visual_projection): Identity() (text_projection): Identity() ) ) (normalizer): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("seregadgl/t12") # Run inference sentences = [ 'honor watch gs pro black ', 'honor watch gs pro white ', 'трансформер pituso carlo hb gy 06 lemon', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 1024] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Dataset: `example-dev` * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.4602 | | **spearman_cosine** | **0.4874** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 63,802 training samples * Columns: doc, candidate, and label * Approximate statistics based on the first 1000 samples: | | doc | candidate | label | |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | doc | candidate | label | |:-------------------------------------------------------|:-----------------------------------------------------------------------|:---------------| | массажер xiaomi massage gun eu bhr5608eu | перкуссионный массажер xiaomi massage gun mini bhr6083gl | 0 | | безударная дрель ingco ed50028 | ударная дрель ingco id211002 | 0 | | жидкость old smuggler 30мл 20мг | жидкость old smuggler salt 30ml marlboro 20mg | 0 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Evaluation Dataset #### Unnamed Dataset * Size: 7,090 evaluation samples * Columns: doc, candidate, and label * Approximate statistics based on the first 1000 samples: | | doc | candidate | label | |:--------|:-----------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------|:------------------------------------------------| | type | string | string | int | | details | | | | * Samples: | doc | candidate | label | |:--------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------|:---------------| | круглое пляжное парео селфи коврик пляжная подстилка пляжное покрывало пляжный коврик пироженко | круглое пляжное парео селфи коврик пляжная подстилка пляжное покрывало пляжный коврик клубника | 0 | | аккумулятор батарея для ноутбука asus g751 | аккумулятор батарея для ноутбука asus g75 series | 0 | | миксер bosch mfq3520 mfq 3520 | миксер bosch mfq 4020 | 0 | * Loss: [CoSENTLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "pairwise_cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 1 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `load_best_model_at_end`: True - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 1 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | Validation Loss | example-dev_spearman_cosine | |:------:|:----:|:-------------:|:---------------:|:---------------------------:| | 0 | 0 | - | - | 0.0849 | | 0.1254 | 500 | 3.7498 | 3.0315 | 0.3797 | | 0.2508 | 1000 | 2.7653 | 2.7538 | 0.4508 | | 0.3761 | 1500 | 2.5938 | 2.7853 | 0.4689 | | 0.5015 | 2000 | 2.6425 | 2.6761 | 0.4800 | | 0.6269 | 2500 | 2.6859 | 2.6341 | 0.4840 | | 0.7523 | 3000 | 2.5805 | 2.6350 | 0.4855 | | 0.8776 | 3500 | 2.7247 | 2.6087 | 0.4874 | ### Framework Versions - Python: 3.10.14 - Sentence Transformers: 3.3.1 - Transformers: 4.46.3 - PyTorch: 2.4.0 - Accelerate: 0.34.2 - Datasets: 3.0.1 - Tokenizers: 0.20.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### CoSENTLoss ```bibtex @online{kexuefm-8847, title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT}, author={Su Jianlin}, year={2022}, month={Jan}, url={https://kexue.fm/archives/8847}, } ```