File size: 3,880 Bytes
c7d2a58
 
 
c5098bd
c7d2a58
 
 
 
 
029e0bd
 
c7d2a58
029e0bd
c7d2a58
 
 
 
 
0af2224
c7d2a58
 
 
 
 
 
029e0bd
c7d2a58
 
 
029e0bd
c7d2a58
 
 
 
 
 
029e0bd
c7d2a58
 
 
 
029e0bd
c7d2a58
 
 
029e0bd
 
c7d2a58
 
 
 
029e0bd
c7d2a58
c5098bd
 
 
 
c7d2a58
 
 
 
029e0bd
c7d2a58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
import logging
import torch
import os
import base64

from pyannote.audio import Pipeline
from transformers import pipeline, AutoModelForCausalLM
from diarization_utils import diarize
from huggingface_hub import HfApi
from pydantic import ValidationError
from starlette.exceptions import HTTPException

from config import model_settings, InferenceConfig

logger = logging.getLogger(__name__)


class EndpointHandler():
    def __init__(self, path=""):

        device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
        logger.info(f"Using device: {device.type}")
        torch_dtype = torch.float32 if device.type == "cpu" else torch.float16

        self.assistant_model = AutoModelForCausalLM.from_pretrained(
            model_settings.assistant_model,
            torch_dtype=torch_dtype,
            low_cpu_mem_usage=True,
            use_safetensors=True
        ) if model_settings.assistant_model else None

        if self.assistant_model:
            self.assistant_model.to(device)

        self.asr_pipeline = pipeline(
            "automatic-speech-recognition",
            model=model_settings.asr_model,
            torch_dtype=torch_dtype,
            device=device
        )

        if model_settings.diarization_model:
            # diarization pipeline doesn't raise if there is no token
            HfApi().whoami(model_settings.hf_token)
            self.diarization_pipeline = Pipeline.from_pretrained(
                checkpoint_path=model_settings.diarization_model,
                use_auth_token=model_settings.hf_token,
            )
            self.diarization_pipeline.to(device)
        else:
            self.diarization_pipeline = None
            
    
    async def __call__(self, inputs):
        file = inputs.pop("inputs")
        file = base64.b64decode(file)
        parameters = inputs.pop("parameters", {})
        try:
            parameters = InferenceConfig(**parameters)
        except ValidationError as e:
            logger.error(f"Error validating parameters: {e}")
            raise HTTPException(status_code=400, detail=f"Error validating parameters: {e}")
            
        logger.info(f"inference parameters: {parameters}")

        generate_kwargs = {
            "task": parameters.task, 
            "language": parameters.language,
            "assistant_model": self.assistant_model if parameters.assisted else None
        }

        try:
            asr_outputs = self.asr_pipeline(
                file,
                chunk_length_s=parameters.chunk_length_s,
                batch_size=parameters.batch_size,
                generate_kwargs=generate_kwargs,
                return_timestamps=True,
            )
        except RuntimeError as e:
            logger.error(f"ASR inference error: {str(e)}")
            raise HTTPException(status_code=400, detail=f"ASR inference error: {str(e)}")
        except Exception as e:
            logger.error(f"Unknown error diring ASR inference: {str(e)}")
            raise HTTPException(status_code=500, detail=f"Unknown error diring ASR inference: {str(e)}")

        if self.diarization_pipeline:
            try:
                transcript = diarize(self.diarization_pipeline, file, parameters, asr_outputs)
            except RuntimeError as e:
                logger.error(f"Diarization inference error: {str(e)}")
                raise HTTPException(status_code=400, detail=f"Diarization inference error: {str(e)}")
            except Exception as e:
                logger.error(f"Unknown error during diarization: {str(e)}")
                raise HTTPException(status_code=500, detail=f"Unknown error during diarization: {str(e)}")
        else:
            transcript = []

        return {
            "speakers": transcript,
            "chunks": asr_outputs["chunks"],
            "text": asr_outputs["text"],
        }