|
from image_gen_aux import UpscaleWithModel |
|
import numpy as np |
|
from PIL import Image |
|
from io import BytesIO |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.upscaler = UpscaleWithModel.from_pretrained("DAT_x3.pth").to("cuda") |
|
|
|
def __call__(self, data): |
|
img = data.pop("inputs", data) |
|
img = Image.open(BytesIO(img)) |
|
output = upscaler(img, tiling=True, tile_width=768, tile_height=768, overlap=8) |
|
|
|
output = outputs.reconstruction.data.squeeze().float().cpu().clamp_(0, 1).numpy() |
|
output = np.moveaxis(output, source=0, destination=-1) |
|
output = (output * 255.0).round().astype(np.uint8) |
|
|
|
img = Image.fromarray(output) |
|
buffered = BytesIO() |
|
img.save(buffered, format="JPEG") |
|
img_str = base64.b64encode(buffered.getvalue()) |
|
|
|
return img_str.decode() |