File size: 8,519 Bytes
9c73226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
from typing import Dict, List, Any
from diffusers import DPMSolverMultistepScheduler, StableDiffusionXLPipeline
from PIL import Image
from io import BytesIO
import base64
import torch

def merge_images(original, new_image, offset, direction):
    if direction in ["left", "right"]:
        merged_image = np.zeros((original.shape[0], original.shape[1] + offset, 3), dtype=np.uint8)
    elif direction in ["top", "bottom"]:
        merged_image = np.zeros((original.shape[0] + offset, original.shape[1], 3), dtype=np.uint8)

    if direction == "left":
        merged_image[:, offset:] = original
        merged_image[:, : new_image.shape[1]] = new_image
    elif direction == "right":
        merged_image[:, : original.shape[1]] = original
        merged_image[:, original.shape[1] + offset - new_image.shape[1] : original.shape[1] + offset] = new_image
    elif direction == "top":
        merged_image[offset:, :] = original
        merged_image[: new_image.shape[0], :] = new_image
    elif direction == "bottom":
        merged_image[: original.shape[0], :] = original
        merged_image[original.shape[0] + offset - new_image.shape[0] : original.shape[0] + offset, :] = new_image

    return merged_image


def slice_image(image):
    height, width, _ = image.shape
    slice_size = min(width // 2, height // 3)

    slices = []

    for h in range(3):
        for w in range(2):
            left = w * slice_size
            upper = h * slice_size
            right = left + slice_size
            lower = upper + slice_size

            if w == 1 and right > width:
                left -= right - width
                right = width
            if h == 2 and lower > height:
                upper -= lower - height
                lower = height

            slice = image[upper:lower, left:right]
            slices.append(slice)

    return slices


def process_image(
    image,
    fill_color=(0, 0, 0),
    mask_offset=50,
    blur_radius=500,
    expand_pixels=256,
    direction="left",
    inpaint_mask_color=50,
    max_size=1024,
):
    height, width = image.shape[:2]

    new_height = height + (expand_pixels if direction in ["top", "bottom"] else 0)
    new_width = width + (expand_pixels if direction in ["left", "right"] else 0)

    if new_height > max_size:
        # If so, crop the image from the opposite side
        if direction == "top":
            image = image[:max_size, :]
        elif direction == "bottom":
            image = image[new_height - max_size :, :]
        new_height = max_size

    if new_width > max_size:
        # If so, crop the image from the opposite side
        if direction == "left":
            image = image[:, :max_size]
        elif direction == "right":
            image = image[:, new_width - max_size :]
        new_width = max_size

    height, width = image.shape[:2]

    new_image = np.full((new_height, new_width, 3), fill_color, dtype=np.uint8)
    mask = np.full_like(new_image, 255, dtype=np.uint8)
    inpaint_mask = np.full_like(new_image, 0, dtype=np.uint8)

    mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
    inpaint_mask = cv2.cvtColor(inpaint_mask, cv2.COLOR_BGR2GRAY)

    if direction == "left":
        new_image[:, expand_pixels:] = image[:, : max_size - expand_pixels]
        mask[:, : expand_pixels + mask_offset] = inpaint_mask_color
        inpaint_mask[:, :expand_pixels] = 255
    elif direction == "right":
        new_image[:, :width] = image
        mask[:, width - mask_offset :] = inpaint_mask_color
        inpaint_mask[:, width:] = 255
    elif direction == "top":
        new_image[expand_pixels:, :] = image[: max_size - expand_pixels, :]
        mask[: expand_pixels + mask_offset, :] = inpaint_mask_color
        inpaint_mask[:expand_pixels, :] = 255
    elif direction == "bottom":
        new_image[:height, :] = image
        mask[height - mask_offset :, :] = inpaint_mask_color
        inpaint_mask[height:, :] = 255

    # mask blur
    if blur_radius % 2 == 0:
        blur_radius += 1
    mask = cv2.GaussianBlur(mask, (blur_radius, blur_radius), 0)

    # telea inpaint
    _, mask_np = cv2.threshold(inpaint_mask, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
    inpaint = cv2.inpaint(new_image, mask_np, 3, cv2.INPAINT_TELEA)

    # convert image to tensor
    inpaint = cv2.cvtColor(inpaint, cv2.COLOR_BGR2RGB)
    inpaint = torch.from_numpy(inpaint).permute(2, 0, 1).float()
    inpaint = inpaint / 127.5 - 1
    inpaint = inpaint.unsqueeze(0).to("cuda")

    # convert mask to tensor
    mask = torch.from_numpy(mask)
    mask = mask.unsqueeze(0).float() / 255.0
    mask = mask.to("cuda")

    return inpaint, mask


def image_resize(image, new_size=1024):
    height, width = image.shape[:2]

    aspect_ratio = width / height
    new_width = new_size
    new_height = new_size

    if aspect_ratio != 1:
        if width > height:
            new_height = int(new_size / aspect_ratio)
        else:
            new_width = int(new_size * aspect_ratio)

    image = cv2.resize(image, (new_width, new_height), interpolation=cv2.INTER_LANCZOS4)

    return image


class EndpointHandler():
    def __init__(self, path=""):
        self.pipeline = StableDiffusionXLPipeline.from_pretrained(
            "SG161222/RealVisXL_V4.0",
            torch_dtype=torch.float16,
            variant="fp16",
            custom_pipeline="pipeline_stable_diffusion_xl_differential_img2img",
        ).to("cuda")
        self.pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config, use_karras_sigmas=True)

        self.pipeline.load_ip_adapter(
            "h94/IP-Adapter",
            subfolder="sdxl_models",
            weight_name=[
                "ip-adapter-plus_sdxl_vit-h.safetensors",
            ],
            image_encoder_folder="models/image_encoder",
        )
        self.pipeline.set_ip_adapter_scale(0.1)
    
    def generate_image(prompt, negative_prompt, image, mask, ip_adapter_image, seed: int = None):
        if seed is None:
            seed = random.randint(0, 2**32 - 1)
    
        generator = torch.Generator(device="cpu").manual_seed(seed)
    
        image = self.pipeline(
            prompt=prompt,
            negative_prompt=negative_prompt,
            width=1024,
            height=1024,
            guidance_scale=4.0,
            num_inference_steps=25,
            original_image=image,
            image=image,
            strength=1.0,
            map=mask,
            generator=generator,
            ip_adapter_image=[ip_adapter_image],
            output_type="np",
        ).images[0]
    
        image = (image * 255).astype(np.uint8)
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    
        return image

    def __call__(self, data: Dict[str, Any]):

        prompt = ""
        negative_prompt = ""
        # direction = "right"  # left, right, top, bottom
        inpaint_mask_color = 50  # lighter use more of the Telea inpainting
        # expand_pixels = 256  # I recommend to don't go more than half of the picture so it has context
        # times_to_expand = 4
        
        inputs = data.pop("inputs", data)

        # decode base64 image to PIL
        original = Image.open(BytesIO(base64.b64decode(inputs['image'])))
        mask = Image.open(BytesIO(base64.b64decode(inputs['mask'])))
        original = numpy.array(original)
        
        image = image_resize(original)
        expand_pixels_to_square = 1024 - image.shape[1]  # image.shape[1] for horizontal, image.shape[0] for vertical
        image, mask = process_image(
            image, expand_pixels=expand_pixels_to_square, direction=direction, inpaint_mask_color=inpaint_mask_color
        )
        
        ip_adapter_image = []
        for index, part in enumerate(slice_image(original)):
            ip_adapter_image.append(part)
        
        generated = generate_image(prompt, negative_prompt, image, mask, ip_adapter_image)
        final_image = generated
        
        for i in range(times_to_expand):
            image, mask = process_image(
                final_image, direction=direction, expand_pixels=expand_pixels, inpaint_mask_color=inpaint_mask_color
            )
        
            ip_adapter_image = []
            for index, part in enumerate(slice_image(generated)):
                ip_adapter_image.append(part)
        
            generated = generate_image(prompt, negative_prompt, image, mask, ip_adapter_image)
            final_image = merge_images(final_image, generated, 256, direction)