File size: 4,412 Bytes
c8c2de1
5afa729
c8c2de1
cc90758
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c8c2de1
cc90758
 
 
 
 
ec6789b
c8c2de1
cc90758
 
c8c2de1
 
 
 
 
 
 
 
 
 
cc90758
c8c2de1
082cccc
c8c2de1
cc90758
 
c8c2de1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
---
pipeline_tag: sentence-similarity
language:
  - af
  - am
  - ar
  - as
  - az
  - be
  - bg
  - bn
  - bo
  - bs
  - ca
  - ceb
  - co
  - cs
  - cy
  - da
  - de
  - el
  - en
  - eo
  - es
  - et
  - eu
  - fa
  - fi
  - fr
  - fy
  - ga
  - gd
  - gl
  - gu
  - ha
  - haw
  - he
  - hi
  - hmn
  - hr
  - ht
  - hu
  - hy
  - id
  - ig
  - is
  - it
  - ja
  - jv
  - ka
  - kk
  - km
  - kn
  - ko
  - ku
  - ky
  - la
  - lb
  - lo
  - lt
  - lv
  - mg
  - mi
  - mk
  - ml
  - mn
  - mr
  - ms
  - mt
  - my
  - ne
  - nl
  - no
  - ny
  - or
  - pa
  - pl
  - pt
  - ro
  - ru
  - rw
  - si
  - sk
  - sl
  - sm
  - sn
  - so
  - sq
  - sr
  - st
  - su
  - sv
  - sw
  - ta
  - te
  - tg
  - th
  - tk
  - tl
  - tr
  - tt
  - ug
  - uk
  - ur
  - uz
  - vi
  - wo
  - xh
  - yi
  - yo
  - zh
  - zu
tags:
  - bert
  - sentence_embedding
  - multilingual
  - google
  - sentence-similarity
license: apache-2.0
datasets:
  - CommonCrawl
  - Wikipedia
---

# LaBSE

## Model description

Language-agnostic BERT Sentence Encoder (LaBSE) is a BERT-based model trained for sentence embedding for 109 languages. The pre-training process combines masked language modeling with translation language modeling. The model is useful for getting multilingual sentence embeddings and for bi-text retrieval.

- Model: [HuggingFace's model hub](https://huggingface.co/setu4993/LaBSE).
- Paper: [arXiv](https://arxiv.org/abs/2007.01852).
- Original model: [TensorFlow Hub](https://tfhub.dev/google/LaBSE/2).
- Blog post: [Google AI Blog](https://ai.googleblog.com/2020/08/language-agnostic-bert-sentence.html).
- Conversion from TensorFlow to PyTorch: [GitHub](https://github.com/setu4993/convert-labse-tf-pt).

This is migrated from the v2 model on the TF Hub, which uses dict-based input. The embeddings produced by both the versions of the model are [equivalent](https://github.com/setu4993/convert-labse-tf-pt/blob/ec3a019159a54ed6493181a64486c2808c01f216/tests/test_conversion.py#L31).

## Usage

Using the model:

```python
import torch
from transformers import BertModel, BertTokenizerFast


tokenizer = BertTokenizerFast.from_pretrained("setu4993/LaBSE")
model = BertModel.from_pretrained("setu4993/LaBSE")
model = model.eval()

english_sentences = [
    "dog",
    "Puppies are nice.",
    "I enjoy taking long walks along the beach with my dog.",
]
english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True)

with torch.no_grad():
    english_outputs = model(**english_inputs)
```

To get the sentence embeddings, use the pooler output:

```python
english_embeddings = english_outputs.pooler_output
```

Output for other languages:

```python
italian_sentences = [
    "cane",
    "I cuccioli sono carini.",
    "Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.",
]
japanese_sentences = ["犬", "子犬はいいです", "私は犬と一緒にビーチを散歩するのが好きです"]
italian_inputs = tokenizer(italian_sentences, return_tensors="pt", padding=True)
japanese_inputs = tokenizer(japanese_sentences, return_tensors="pt", padding=True)

with torch.no_grad():
    italian_outputs = model(**italian_inputs)
    japanese_outputs = model(**japanese_inputs)

italian_embeddings = italian_outputs.pooler_output
japanese_embeddings = japanese_outputs.pooler_output
```

For similarity between sentences, an L2-norm is recommended before calculating the similarity:

```python
import torch.nn.functional as F


def similarity(embeddings_1, embeddings_2):
    normalized_embeddings_1 = F.normalize(embeddings_1, p=2)
    normalized_embeddings_2 = F.normalize(embeddings_2, p=2)
    return torch.matmul(
        normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1)
    )


print(similarity(english_embeddings, italian_embeddings))
print(similarity(english_embeddings, japanese_embeddings))
print(similarity(italian_embeddings, japanese_embeddings))
```

## Details

Details about data, training, evaluation and performance metrics are available in the [original paper](https://arxiv.org/abs/2007.01852).

### BibTeX entry and citation info

```bibtex
@misc{feng2020languageagnostic,
      title={Language-agnostic BERT Sentence Embedding},
      author={Fangxiaoyu Feng and Yinfei Yang and Daniel Cer and Naveen Arivazhagan and Wei Wang},
      year={2020},
      eprint={2007.01852},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```