Add model card
Browse files
README.md
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- ar
|
4 |
+
- de
|
5 |
+
- en
|
6 |
+
- es
|
7 |
+
- fr
|
8 |
+
- it
|
9 |
+
- ja
|
10 |
+
- ko
|
11 |
+
- nl
|
12 |
+
- pl
|
13 |
+
- pt
|
14 |
+
- ru
|
15 |
+
- th
|
16 |
+
- tr
|
17 |
+
- zh
|
18 |
+
tags:
|
19 |
+
- bert
|
20 |
+
- sentence_embedding
|
21 |
+
- multilingual
|
22 |
+
- google
|
23 |
+
- sentence-similarity
|
24 |
+
- labse
|
25 |
+
license: apache-2.0
|
26 |
+
datasets:
|
27 |
+
- CommonCrawl
|
28 |
+
- Wikipedia
|
29 |
+
---
|
30 |
+
|
31 |
+
# LaBSE
|
32 |
+
|
33 |
+
## Model description
|
34 |
+
|
35 |
+
Smaller Language-agnostic BERT Sentence Encoder (LaBSE) is a BERT-based model distilled from the [original LaBSE model](https://huggingface.co/setu4993/LaBSE) to 15 languages (from the original 109 languages) using the techniques described in the paper ['Load What You Need: Smaller Versions of Multilingual BERT'](https://arxiv.org/abs/2010.05609) by [Ukjae Jeong](https://github.com/jeongukjae/).
|
36 |
+
|
37 |
+
- Model: [HuggingFace's model hub](https://huggingface.co/setu4993/smaller-LaBSE).
|
38 |
+
- Original model: [TensorFlow Hub](https://tfhub.dev/jeongukjae/smaller_LaBSE_15lang/1).
|
39 |
+
- Distillation source: [GitHub](https://github.com/jeongukjae/smaller-labse).
|
40 |
+
- Conversion from TensorFlow to PyTorch: [GitHub](https://github.com/setu4993/convert-labse-tf-pt).
|
41 |
+
|
42 |
+
## Usage
|
43 |
+
|
44 |
+
Using the model:
|
45 |
+
|
46 |
+
```python
|
47 |
+
import torch
|
48 |
+
from transformers import BertModel, BertTokenizerFast
|
49 |
+
|
50 |
+
|
51 |
+
tokenizer = BertTokenizerFast.from_pretrained("setu4993/smaller-LaBSE")
|
52 |
+
model = BertModel.from_pretrained("setu4993/smaller-LaBSE")
|
53 |
+
model = model.eval()
|
54 |
+
|
55 |
+
english_sentences = [
|
56 |
+
"dog",
|
57 |
+
"Puppies are nice.",
|
58 |
+
"I enjoy taking long walks along the beach with my dog.",
|
59 |
+
]
|
60 |
+
english_inputs = tokenizer(english_sentences, return_tensors="pt", padding=True)
|
61 |
+
|
62 |
+
with torch.no_grad():
|
63 |
+
english_outputs = model(**english_inputs)
|
64 |
+
```
|
65 |
+
|
66 |
+
To get the sentence embeddings, use the pooler output:
|
67 |
+
|
68 |
+
```python
|
69 |
+
english_embeddings = english_outputs.pooler_output
|
70 |
+
```
|
71 |
+
|
72 |
+
Output for other languages:
|
73 |
+
|
74 |
+
```python
|
75 |
+
italian_sentences = [
|
76 |
+
"cane",
|
77 |
+
"I cuccioli sono carini.",
|
78 |
+
"Mi piace fare lunghe passeggiate lungo la spiaggia con il mio cane.",
|
79 |
+
]
|
80 |
+
japanese_sentences = ["犬", "子犬はいいです", "私は犬と一緒にビーチを散歩するのが好きです"]
|
81 |
+
italian_inputs = tokenizer(italian_sentences, return_tensors="pt", padding=True)
|
82 |
+
japanese_inputs = tokenizer(japanese_sentences, return_tensors="pt", padding=True)
|
83 |
+
|
84 |
+
with torch.no_grad():
|
85 |
+
italian_outputs = model(**italian_inputs)
|
86 |
+
japanese_outputs = model(**japanese_inputs)
|
87 |
+
|
88 |
+
italian_embeddings = italian_outputs.pooler_output
|
89 |
+
japanese_embeddings = japanese_outputs.pooler_output
|
90 |
+
```
|
91 |
+
|
92 |
+
For similarity between sentences, an L2-norm is recommended before calculating the similarity:
|
93 |
+
|
94 |
+
```python
|
95 |
+
import torch.nn.functional as F
|
96 |
+
|
97 |
+
|
98 |
+
def similarity(embeddings_1, embeddings_2):
|
99 |
+
normalized_embeddings_1 = F.normalize(embeddings_1, p=2)
|
100 |
+
normalized_embeddings_2 = F.normalize(embeddings_2, p=2)
|
101 |
+
return torch.matmul(
|
102 |
+
normalized_embeddings_1, normalized_embeddings_2.transpose(0, 1)
|
103 |
+
)
|
104 |
+
|
105 |
+
|
106 |
+
print(similarity(english_embeddings, italian_embeddings))
|
107 |
+
print(similarity(english_embeddings, japanese_embeddings))
|
108 |
+
print(similarity(italian_embeddings, japanese_embeddings))
|
109 |
+
```
|
110 |
+
|
111 |
+
## Details
|
112 |
+
|
113 |
+
Details about data, training, evaluation and performance metrics are available in the [original paper](https://arxiv.org/abs/2007.01852).
|
114 |
+
|
115 |
+
### BibTeX entry and citation info
|
116 |
+
|
117 |
+
```bibtex
|
118 |
+
@misc{feng2020languageagnostic,
|
119 |
+
title={Language-agnostic BERT Sentence Embedding},
|
120 |
+
author={Fangxiaoyu Feng and Yinfei Yang and Daniel Cer and Naveen Arivazhagan and Wei Wang},
|
121 |
+
year={2020},
|
122 |
+
eprint={2007.01852},
|
123 |
+
archivePrefix={arXiv},
|
124 |
+
primaryClass={cs.CL}
|
125 |
+
}
|
126 |
+
```
|