Vladimir Abramov
Upload PPO agent trained in LunarLander-v2 for Unit 1 Deep-RL Course. Epochs: 500k, Mean Reward: 192 +/- 75
64b3873
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f70d7e49710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f70d7e497a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f70d7e49830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f70d7e498c0>", "_build": "<function ActorCriticPolicy._build at 0x7f70d7e49950>", "forward": "<function ActorCriticPolicy.forward at 0x7f70d7e499e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f70d7e49a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f70d7e49b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f70d7e49b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f70d7e49c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f70d7e49cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f70d7e1b4e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVwwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsIhZRoColDIAAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lHSUYowEaGlnaJRoEmgUSwCFlGgWh5RSlChLAUsIhZRoColDIAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/lHSUYowNYm91bmRlZF9iZWxvd5RoEmgUSwCFlGgWh5RSlChLAUsIhZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDCAAAAAAAAAAAlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsIhZRoKolDCAAAAAAAAAAAlHSUYowKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gASVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1655674775.2629166, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjQIAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxBLCIaUaAOMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiiUIAAgAAoIdOvor7Zjy0O7s8H6zRumf297313807AACAPwAAgD/NX/G8KdBMur0cjzk8UfKzRWyVunX1pLgAAIA/AACAPzOBPbzsSdy5m8zWui3gm7U5tCw4gz74OQAAgD8AAIA/gBO+vVzfYroQMZ26K3zptNcydLvYArc5AACAPwAAgD+dMLC+AOfOvSO12Doi7hs6O7D5Pv7lQLoAAIA/AACAP7BKiD5phBc/uHhavnMcj778wka9FS28vgAAAAAAAAAATam0vXs0lriVRoq8qkWuvAeLoLqDrly7AAAAAAAAAAAG3Ti+raJnP0dRPj0n4Ja+PdJBvr5CFD4AAAAAAAAAACCtJz72e2g70Retu94tGLkQRhY9xUL/uQAAgD8AAIA/2q6yvRTmizm+88c68Pn/PEF0HjoOLMC7AACAPwAAgD8m4C8+/REPPEuc/7sdCP25oWSIPUYg+boAAIA/AACAP/3qiT5A+oI/CkjtPjSpAL/D0Mo+lTR/PgAAAAAAAAAAM/zAPpFwBj+aaQ48vfCuvgjRlD5FrSO+AAAAAAAAAACm62Q+cY1gPEbMirwV/xO8kYfbPRsDEL0AAAAAAACAP4C9t70pkFO6gJhIulORgbW5AJs6grdlOQAAgD8AAIA/swNiva6pkbrWhiS6VSH1sm49jrqIjjs5AACAPwAAgD+UdJRiLg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVmAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSxCFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDEAAAAAAAAAAAAAAAAAAAAACUdJRiLg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVcRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIMbQ6OUPVPkCUhpRSlIwBbJRL34wBdJRHQHrsFlbu+h51fZQoaAZoCWgPQwitpBXf0A9gQJSGlFKUaBVN6ANoFkdAeu6TefqX4XV9lChoBmgJaA9DCPtZLEXy/lFAlIaUUpRoFU3oA2gWR0B6/I67ulXSdX2UKGgGaAloD0MITI47pYOuXECUhpRSlGgVTegDaBZHQHsPYDs+mnB1fZQoaAZoCWgPQwieQxmqYlFfQJSGlFKUaBVN6ANoFkdAexYJng5zYHV9lChoBmgJaA9DCLTjht9NdxBAlIaUUpRoFU3oA2gWR0B7KXZ9NN8FdX2UKGgGaAloD0MI0Eaum1LaYECUhpRSlGgVTegDaBZHQHt8Gl2vB8B1fZQoaAZoCWgPQwiHwJFAA0RgQJSGlFKUaBVN6ANoFkdAe4WNvwVj7XV9lChoBmgJaA9DCIKpZtbS72JAlIaUUpRoFU3oA2gWR0B7io6jnFHbdX2UKGgGaAloD0MIYfvJGB8+T0CUhpRSlGgVTegDaBZHQHuYrQTmGM51fZQoaAZoCWgPQwhtAaH1cOxiQJSGlFKUaBVN6ANoFkdAe5z94/u9e3V9lChoBmgJaA9DCNRGdTqQlR9AlIaUUpRoFUv5aBZHQHuqjRYzSCx1fZQoaAZoCWgPQwgd6QyMPOxhQJSGlFKUaBVN6ANoFkdAe7nlu3trsXV9lChoBmgJaA9DCKYO8nowFWRAlIaUUpRoFU3oA2gWR0B7779itq59dX2UKGgGaAloD0MIZeHra11CXUCUhpRSlGgVTegDaBZHQHv4nX/YJ3R1fZQoaAZoCWgPQwjDRlm/GXBlQJSGlFKUaBVN6ANoFkdAfAjU1hsqKHV9lChoBmgJaA9DCJOLMbCO319AlIaUUpRoFU3oA2gWR0B8DVEYwZfldX2UKGgGaAloD0MIpYKKqt+pYkCUhpRSlGgVTegDaBZHQHwo3BciW3V1fZQoaAZoCWgPQwi22sNeqG1gQJSGlFKUaBVN6ANoFkdAfCuBBRhttXV9lChoBmgJaA9DCETdByC1yllAlIaUUpRoFU3oA2gWR0B8OZMwlByCdX2UKGgGaAloD0MI+kUJ+os9YECUhpRSlGgVTegDaBZHQHxLmZmZmZp1fZQoaAZoCWgPQwi5GtmVlqxbQJSGlFKUaBVN6ANoFkdAfFIAFgUlA3V9lChoBmgJaA9DCF6iemtgwURAlIaUUpRoFUvYaBZHQHxrAy6+WW11fZQoaAZoCWgPQwgz4Cwly404QJSGlFKUaBVNHwFoFkdAfLXN+so2GnV9lChoBmgJaA9DCOp7DcFxA11AlIaUUpRoFU3oA2gWR0B8tzvYvnKXdX2UKGgGaAloD0MI6ndha7arX0CUhpRSlGgVTegDaBZHQHzAklNUOut1fZQoaAZoCWgPQwiA8KFEy0dhQJSGlFKUaBVN6ANoFkdAfMUy8zyjHnV9lChoBmgJaA9DCFuzlZf8TlLAlIaUUpRoFUvjaBZHQHzHmaQV9F51fZQoaAZoCWgPQwhdiNUfYZxlQJSGlFKUaBVN6ANoFkdAfNFxgRbr1XV9lChoBmgJaA9DCMzwn26ggApAlIaUUpRoFU0DAWgWR0B800x1xKg7dX2UKGgGaAloD0MIfV2G//SMYECUhpRSlGgVTegDaBZHQHzU7Jr+Hah1fZQoaAZoCWgPQwhWKxN+qa1ZQJSGlFKUaBVN6ANoFkdAfN80Nz8xbnV9lChoBmgJaA9DCPTEc7aAM11AlIaUUpRoFU3oA2gWR0B86Qv38GcGdX2UKGgGaAloD0MI3xltVRL9ZECUhpRSlGgVTegDaBZHQH0YZNwiqyZ1fZQoaAZoCWgPQwgn3ZbIBf9HQJSGlFKUaBVN6ANoFkdAfSDSV4X403V9lChoBmgJaA9DCEPnNXaJ4FJAlIaUUpRoFU3oA2gWR0B9L9V6u4gBdX2UKGgGaAloD0MIZJRnXo4QZECUhpRSlGgVTegDaBZHQH0z6+SKWLR1fZQoaAZoCWgPQwhPHhZqTcliQJSGlFKUaBVN6ANoFkdAfU19HMEA53V9lChoBmgJaA9DCCdLrfcb+UfAlIaUUpRoFUvOaBZHQH1QoPkJa7p1fZQoaAZoCWgPQwg0aOif4C46QJSGlFKUaBVLx2gWR0B9YV7NSqEOdX2UKGgGaAloD0MIsvZ3tkdrPECUhpRSlGgVS81oFkdAfX7F49ovjHV9lChoBmgJaA9DCGoxeJh2YGBAlIaUUpRoFU3oA2gWR0B9k8xTKkmAdX2UKGgGaAloD0MISiU8odfEYECUhpRSlGgVTegDaBZHQH2WkpVjqfR1fZQoaAZoCWgPQwgfK/htCJ1gQJSGlFKUaBVN6ANoFkdAfZgUn5SFXnV9lChoBmgJaA9DCKbtX1lpDEBAlIaUUpRoFUvjaBZHQH2aMQVbiZR1fZQoaAZoCWgPQwhT6LzGrnRkQJSGlFKUaBVN6ANoFkdAfenOI68xsXV9lChoBmgJaA9DCOD1mbM+L1tAlIaUUpRoFU3oA2gWR0B97lreqJdjdX2UKGgGaAloD0MIPpP98zSLYECUhpRSlGgVTegDaBZHQH3w5Fw1ivx1fZQoaAZoCWgPQwjDt7BuPAJhQJSGlFKUaBVN6ANoFkdAffrIBikO7XV9lChoBmgJaA9DCCYeUDblGGJAlIaUUpRoFU3oA2gWR0B9/J1xKg7HdX2UKGgGaAloD0MIB5rPuduQYUCUhpRSlGgVTegDaBZHQH3+N7OVxCJ1fZQoaAZoCWgPQwgROBJosJphQJSGlFKUaBVN6ANoFkdAfgikbgjyF3V9lChoBmgJaA9DCIUmiSVlj2NAlIaUUpRoFU3oA2gWR0B+E2JoCdSVdX2UKGgGaAloD0MIYB3HD5UaRkCUhpRSlGgVS+BoFkdAfhe2aDwpfHV9lChoBmgJaA9DCE2G4/kMWDBAlIaUUpRoFUvUaBZHQH4hUgbIcR11fZQoaAZoCWgPQwjvkjgroiZeQJSGlFKUaBVN6ANoFkdAfj+Z3LV4HHV9lChoBmgJaA9DCMBeYcH9TWFAlIaUUpRoFU3oA2gWR0B+VuKl54W2dX2UKGgGaAloD0MIk4rG2t87VUCUhpRSlGgVTegDaBZHQH573IyTINp1fZQoaAZoCWgPQwjz4y8tag1iQJSGlFKUaBVN6ANoFkdAfrDY/FBIF3V9lChoBmgJaA9DCJS+EHLeDVlAlIaUUpRoFU3oA2gWR0B+x3AEdNnHdX2UKGgGaAloD0MIxsN7DiyrYUCUhpRSlGgVTegDaBZHQH7KZ/kNnXd1fZQoaAZoCWgPQwgrptJPOFJdQJSGlFKUaBVN6ANoFkdAfsv+GGmDUXV9lChoBmgJaA9DCAWGrG71pF5AlIaUUpRoFU3oA2gWR0B+zhEWqLjxdX2UKGgGaAloD0MIBORLqGDQYUCUhpRSlGgVTegDaBZHQH8dJRoAXEZ1fZQoaAZoCWgPQwjY1HlU/LhjQJSGlFKUaBVN6ANoFkdAfyRznzQNTnV9lChoBmgJaA9DCG1Zvi5DZGJAlIaUUpRoFU3oA2gWR0B/MLoxHoX9dX2UKGgGaAloD0MIWVGDaRivWkCUhpRSlGgVTegDaBZHQH8ydLcsUZh1fZQoaAZoCWgPQwhpAdpWMwViQJSGlFKUaBVN6ANoFkdAfz4ZxrBTGnV9lChoBmgJaA9DCJPfopOlgENAlIaUUpRoFUvIaBZHQH8/WYfGMn91fZQoaAZoCWgPQwj4VE57SnxfQJSGlFKUaBVN6ANoFkdAf0l/Ot4iYHV9lChoBmgJaA9DCJYjZCBP0mBAlIaUUpRoFU3oA2gWR0B/ThDArQPadX2UKGgGaAloD0MIQIf58gJgMkCUhpRSlGgVS9xoFkdAf0+BZpztC3V9lChoBmgJaA9DCOIjYkqkTWBAlIaUUpRoFU3oA2gWR0B/Vs7T2FnJdX2UKGgGaAloD0MIzEV8J2Y1KECUhpRSlGgVS9JoFkdAf2TMxXXAdnV9lChoBmgJaA9DCPgb7bjh+mFAlIaUUpRoFU3oA2gWR0B/cAIIF/x2dX2UKGgGaAloD0MI/FbrxOVdZECUhpRSlGgVTegDaBZHQH+DDb8FY+11fZQoaAZoCWgPQwj9+iE2WLQ8QJSGlFKUaBVL4WgWR0B/obocJdB0dX2UKGgGaAloD0MI5jxjX7KZZECUhpRSlGgVTegDaBZHQH+lQ2/BWPt1fZQoaAZoCWgPQwgD0Chd+pReQJSGlFKUaBVN6ANoFkdAf97aBqbjLnV9lChoBmgJaA9DCDkNUYU/b2JAlIaUUpRoFU3oA2gWR0B/9nKU3XI2dX2UKGgGaAloD0MInwPLETIhUkCUhpRSlGgVTegDaBZHQH/5YToMa0h1fZQoaAZoCWgPQwhsk4rG2qplQJSGlFKUaBVN6ANoFkdAf/sOdoWYW3V9lChoBmgJaA9DCEt4Qq8/2FtAlIaUUpRoFU3oA2gWR0CAAi9Oh0yQdX2UKGgGaAloD0MIPGu3XWi2TECUhpRSlGgVS8poFkdAgC0d4u9OAXV9lChoBmgJaA9DCCXK3lLOkmJAlIaUUpRoFU3oA2gWR0CAMInjyWiUdX2UKGgGaAloD0MI/TGtTeNzY0CUhpRSlGgVTegDaBZHQIAxiHwgDA91fZQoaAZoCWgPQwgmHeVgNu9jQJSGlFKUaBVN6ANoFkdAgDgwvQF9r3V9lChoBmgJaA9DCPZAKzBkj2BAlIaUUpRoFU3oA2gWR0CAPXFtsN2DdX2UKGgGaAloD0MIjNtoAO9FY0CUhpRSlGgVTegDaBZHQIBAAbGWD6F1fZQoaAZoCWgPQwikVS3pqKNiQJSGlFKUaBVN6ANoFkdAgEC+iaiKznV9lChoBmgJaA9DCD9wlScQXVxAlIaUUpRoFU3oA2gWR0CARFLMcIZ7dX2UKGgGaAloD0MID5wzorTDQECUhpRSlGgVS9VoFkdAgEYKDTSb6XV9lChoBmgJaA9DCFdAoZ6+3GJAlIaUUpRoFU3oA2gWR0CASxFVDKHPdX2UKGgGaAloD0MIBTOmYI3mUECUhpRSlGgVTegDaBZHQIBavKQq7RR1fZQoaAZoCWgPQwhAFqJDYKVgQJSGlFKUaBVN6ANoFkdAgGsAggX/HnV9lChoBmgJaA9DCOkMjLysK2JAlIaUUpRoFU3oA2gWR0CAbM1qnFYMdX2UKGgGaAloD0MIHm6HhsWeZUCUhpRSlGgVTegDaBZHQICTBJkGzKN1fZQoaAZoCWgPQwjpKt1dZ6laQJSGlFKUaBVN6ANoFkdAgJS+nZTQ3XV9lChoBmgJaA9DCE2/RLz1LGNAlIaUUpRoFU3oA2gWR0CAlaH8CPp7dX2UKGgGaAloD0MIUl+WdupuZkCUhpRSlGgVTegDaBZHQICa6Nn5BTp1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gASVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}} |