--- license: cc-by-nc-4.0 --- This reward function can be used for RLHF, including PPO, iterative SFT, iterative DPO. ## Training The base model is `meta-llama/Meta-Llama-3-8B-Instruct`. We use the training script at `https://github.com/WeiXiongUST/RLHF-Reward-Modeling`. ## Uses ```python from transformers import AutoTokenizer, pipeline rm_tokenizer = AutoTokenizer.from_pretrained("sfairXC/FsfairX-LLaMA3-RM-v0.1") device = 0 # accelerator.device rm_pipe = pipeline( "sentiment-analysis", model="sfairXC/FsfairX-LLaMA3-RM-v0.1", #device="auto", device=device, tokenizer=rm_tokenizer, model_kwargs={"torch_dtype": torch.bfloat16} ) pipe_kwargs = { "return_all_scores": True, "function_to_apply": "none", "batch_size": 1 } chat = [ {"role": "user", "content": "Hello, how are you?"}, {"role": "assistant", "content": "I'm doing great. How can I help you today?"}, {"role": "user", "content": "I'd like to show off how chat templating works!"}, ] test_texts = [tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=False).replace(tokenizer.bos_token, "")] pipe_outputs = rm_pipe(test_texts, **pipe_kwargs) rewards = [output[0]["score"] for output in pipe_outputs] ``` ## Results This Reward model is the SOTA open-source RM (Apr 20, 2024) on Reward-Bench. | Metric | Score | |--------------|--------| | Chat | 99.44 | | Chat Hard | 65.13 | | Safety | 88.76 | | Reasoning | 88.3 | ## References The repo was part of the iterative rejection sampling fine-tuning and iterative DPO. If you find the content of this repo useful in your work, please consider cite it as follows: ```bibtex @article{dong2023raft, title={Raft: Reward ranked finetuning for generative foundation model alignment}, author={Dong, Hanze and Xiong, Wei and Goyal, Deepanshu and Pan, Rui and Diao, Shizhe and Zhang, Jipeng and Shum, Kashun and Zhang, Tong}, journal={arXiv preprint arXiv:2304.06767}, year={2023} } @misc{xiong2024iterative, title={Iterative Preference Learning from Human Feedback: Bridging Theory and Practice for RLHF under KL-Constraint}, author={Wei Xiong and Hanze Dong and Chenlu Ye and Ziqi Wang and Han Zhong and Heng Ji and Nan Jiang and Tong Zhang}, year={2024}, eprint={2312.11456}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```