File size: 5,631 Bytes
16eb59e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import argparse
import itertools
import numpy as np
import pandas as pd
import wandb
import wandb.apis.public

from collections import defaultdict
from dataclasses import dataclass
from typing import Dict, Iterable, List, TypeVar

from benchmark_publish import RunGroup


@dataclass
class Comparison:
    control_values: List[float]
    experiment_values: List[float]

    def mean_diff_percentage(self) -> float:
        return self._diff_percentage(
            np.mean(self.control_values).item(), np.mean(self.experiment_values).item()
        )

    def median_diff_percentage(self) -> float:
        return self._diff_percentage(
            np.median(self.control_values).item(),
            np.median(self.experiment_values).item(),
        )

    def _diff_percentage(self, c: float, e: float) -> float:
        if c == e:
            return 0
        elif c == 0:
            return float("inf") if e > 0 else float("-inf")
        return 100 * (e - c) / c

    def score(self) -> float:
        return (
            np.sum(
                np.sign((self.mean_diff_percentage(), self.median_diff_percentage()))
            ).item()
            / 2
        )


RunGroupRunsSelf = TypeVar("RunGroupRunsSelf", bound="RunGroupRuns")


class RunGroupRuns:
    def __init__(
        self,
        run_group: RunGroup,
        control: List[str],
        experiment: List[str],
        summary_stats: List[str] = ["best_eval", "eval", "train_rolling"],
        summary_metrics: List[str] = ["mean", "result"],
    ) -> None:
        self.algo = run_group.algo
        self.env = run_group.env_id
        self.control = set(control)
        self.experiment = set(experiment)

        self.summary_stats = summary_stats
        self.summary_metrics = summary_metrics

        self.control_runs = []
        self.experiment_runs = []

    def add_run(self, run: wandb.apis.public.Run) -> None:
        wandb_tags = set(run.config.get("wandb_tags", []))
        if self.control & wandb_tags:
            self.control_runs.append(run)
        elif self.experiment & wandb_tags:
            self.experiment_runs.append(run)

    def comparisons_by_metric(self) -> Dict[str, Comparison]:
        c_by_m = {}
        for metric in (
            f"{s}_{m}"
            for s, m in itertools.product(self.summary_stats, self.summary_metrics)
        ):
            c_by_m[metric] = Comparison(
                [c.summary[metric] for c in self.control_runs],
                [e.summary[metric] for e in self.experiment_runs],
            )
        return c_by_m

    @staticmethod
    def data_frame(rows: Iterable[RunGroupRunsSelf]) -> pd.DataFrame:
        results = defaultdict(list)
        for r in rows:
            results["algo"].append(r.algo)
            results["env"].append(r.env)
            results["control"].append(r.control)
            results["expierment"].append(r.experiment)
            c_by_m = r.comparisons_by_metric()
            results["score"].append(
                sum(m.score() for m in c_by_m.values()) / len(c_by_m)
            )
            for m, c in c_by_m.items():
                results[f"{m}_mean"].append(c.mean_diff_percentage())
                results[f"{m}_median"].append(c.median_diff_percentage())
        return pd.DataFrame(results)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "-p",
        "--wandb-project-name",
        type=str,
        default="rl-algo-impls-benchmarks",
        help="WandB project name to load runs from",
    )
    parser.add_argument(
        "--wandb-entity",
        type=str,
        default=None,
        help="WandB team. None uses default entity",
    )
    parser.add_argument(
        "-n",
        "--wandb-hostname-tag",
        type=str,
        help="WandB tag for hostname (i.e. host_192-9-145-26)",
    )
    parser.add_argument(
        "-c",
        "--wandb-control-tag",
        type=str,
        nargs="+",
        help="WandB tag for control commit (i.e. benchmark_5598ebc)",
    )
    parser.add_argument(
        "-e",
        "--wandb-experiment-tag",
        type=str,
        nargs="+",
        help="WandB tag for experiment commit (i.e. benchmark_5540e1f)",
    )
    parser.add_argument(
        "--exclude_envs",
        type=str,
        nargs="*",
        help="Environments to exclude from comparison",
    )
    parser.set_defaults(
        wandb_hostname_tag="host_192-9-145-26",
        wandb_control_tag=["benchmark_e4d1ed6", "benchmark_5598ebc"],
        wandb_experiment_tag=["benchmark_680043d", "benchmark_5540e1f"],
        exclude_envs=["CarRacing-v0"]
    )
    args = parser.parse_args()
    print(args)

    api = wandb.Api()
    all_runs = api.runs(
        path=f"{args.wandb_entity or api.default_entity}/{args.wandb_project_name}",
        order="+created_at",
    )

    runs_by_run_group: Dict[RunGroup, RunGroupRuns] = {}
    for r in all_runs:
        wandb_tags = r.config.get("wandb_tags", [])
        if not wandb_tags or not args.wandb_hostname_tag in wandb_tags:
            continue
        rg = RunGroup(r.config["algo"], r.config["env"])
        if args.exclude_envs and rg.env_id in args.exclude_envs:
            continue
        if rg not in runs_by_run_group:
            runs_by_run_group[rg] = RunGroupRuns(
                rg, args.wandb_control_tag, args.wandb_experiment_tag
            )
        runs_by_run_group[rg].add_run(r)
    df = RunGroupRuns.data_frame(runs_by_run_group.values()).round(decimals=2)
    print(f"**Total Score: {sum(df.score)}**")
    df.loc["mean"] = df.mean(numeric_only=True)
    print(df.to_markdown())