File size: 4,058 Bytes
79943a9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import gym
import numpy as np
from numpy.typing import NDArray
from typing import Tuple
from rl_algo_impls.wrappers.vectorable_wrapper import (
VecotarableWrapper,
single_observation_space,
)
class RunningMeanStd:
def __init__(self, episilon: float = 1e-4, shape: Tuple[int, ...] = ()) -> None:
self.mean = np.zeros(shape, np.float64)
self.var = np.ones(shape, np.float64)
self.count = episilon
def update(self, x: NDArray) -> None:
batch_mean = np.mean(x, axis=0)
batch_var = np.var(x, axis=0)
batch_count = x.shape[0]
delta = batch_mean - self.mean
total_count = self.count + batch_count
self.mean += delta * batch_count / total_count
m_a = self.var * self.count
m_b = batch_var * batch_count
M2 = m_a + m_b + np.square(delta) * self.count * batch_count / total_count
self.var = M2 / total_count
self.count = total_count
class NormalizeObservation(VecotarableWrapper):
def __init__(
self,
env: gym.Env,
training: bool = True,
epsilon: float = 1e-8,
clip: float = 10.0,
) -> None:
super().__init__(env)
self.rms = RunningMeanStd(shape=single_observation_space(env).shape)
self.training = training
self.epsilon = epsilon
self.clip = clip
def step(self, action):
obs, reward, done, info = self.env.step(action)
return self.normalize(obs), reward, done, info
def reset(self, **kwargs):
obs = self.env.reset(**kwargs)
return self.normalize(obs)
def normalize(self, obs: NDArray) -> NDArray:
obs_array = np.array([obs]) if not self.is_vector_env else obs
if self.training:
self.rms.update(obs_array)
normalized = np.clip(
(obs_array - self.rms.mean) / np.sqrt(self.rms.var + self.epsilon),
-self.clip,
self.clip,
)
return normalized[0] if not self.is_vector_env else normalized
def save(self, path: str) -> None:
np.savez_compressed(
path,
mean=self.rms.mean,
var=self.rms.var,
count=self.rms.count,
)
def load(self, path: str) -> None:
data = np.load(path)
self.rms.mean = data["mean"]
self.rms.var = data["var"]
self.rms.count = data["count"]
class NormalizeReward(VecotarableWrapper):
def __init__(
self,
env: gym.Env,
training: bool = True,
gamma: float = 0.99,
epsilon: float = 1e-8,
clip: float = 10.0,
) -> None:
super().__init__(env)
self.rms = RunningMeanStd(shape=())
self.training = training
self.gamma = gamma
self.epsilon = epsilon
self.clip = clip
self.returns = np.zeros(self.num_envs)
def step(self, action):
obs, reward, done, info = self.env.step(action)
if not self.is_vector_env:
reward = np.array([reward])
reward = self.normalize(reward)
if not self.is_vector_env:
reward = reward[0]
dones = done if self.is_vector_env else np.array([done])
self.returns[dones] = 0
return obs, reward, done, info
def reset(self, **kwargs):
self.returns = np.zeros(self.num_envs)
return self.env.reset(**kwargs)
def normalize(self, rewards):
if self.training:
self.returns = self.returns * self.gamma + rewards
self.rms.update(self.returns)
return np.clip(
rewards / np.sqrt(self.rms.var + self.epsilon), -self.clip, self.clip
)
def save(self, path: str) -> None:
np.savez_compressed(
path,
mean=self.rms.mean,
var=self.rms.var,
count=self.rms.count,
)
def load(self, path: str) -> None:
data = np.load(path)
self.rms.mean = data["mean"]
self.rms.var = data["var"]
self.rms.count = data["count"]
|