DQN playing Acrobot-v1 from https://github.com/sgoodfriend/rl-algo-impls/tree/0511de345b17175b7cf1ea706c3e05981f11761c
8e63d2a
import os | |
import shutil | |
from dataclasses import dataclass | |
from typing import NamedTuple, Optional | |
from rl_algo_impls.shared.vec_env import make_eval_env | |
from rl_algo_impls.runner.config import Config, EnvHyperparams, Hyperparams, RunArgs | |
from rl_algo_impls.runner.running_utils import ( | |
load_hyperparams, | |
set_seeds, | |
get_device, | |
make_policy, | |
) | |
from rl_algo_impls.shared.callbacks.eval_callback import evaluate | |
from rl_algo_impls.shared.policy.policy import Policy | |
from rl_algo_impls.shared.stats import EpisodesStats | |
class EvalArgs(RunArgs): | |
render: bool = True | |
best: bool = True | |
n_envs: Optional[int] = 1 | |
n_episodes: int = 3 | |
deterministic_eval: Optional[bool] = None | |
no_print_returns: bool = False | |
wandb_run_path: Optional[str] = None | |
class Evaluation(NamedTuple): | |
policy: Policy | |
stats: EpisodesStats | |
config: Config | |
def evaluate_model(args: EvalArgs, root_dir: str) -> Evaluation: | |
if args.wandb_run_path: | |
import wandb | |
api = wandb.Api() | |
run = api.run(args.wandb_run_path) | |
params = run.config | |
args.algo = params["algo"] | |
args.env = params["env"] | |
args.seed = params.get("seed", None) | |
args.use_deterministic_algorithms = params.get( | |
"use_deterministic_algorithms", True | |
) | |
config = Config(args, Hyperparams.from_dict_with_extra_fields(params), root_dir) | |
model_path = config.model_dir_path(best=args.best, downloaded=True) | |
model_archive_name = config.model_dir_name(best=args.best, extension=".zip") | |
run.file(model_archive_name).download() | |
if os.path.isdir(model_path): | |
shutil.rmtree(model_path) | |
shutil.unpack_archive(model_archive_name, model_path) | |
os.remove(model_archive_name) | |
else: | |
hyperparams = load_hyperparams(args.algo, args.env) | |
config = Config(args, hyperparams, root_dir) | |
model_path = config.model_dir_path(best=args.best) | |
print(args) | |
set_seeds(args.seed, args.use_deterministic_algorithms) | |
env = make_eval_env( | |
config, | |
EnvHyperparams(**config.env_hyperparams), | |
override_n_envs=args.n_envs, | |
render=args.render, | |
normalize_load_path=model_path, | |
) | |
device = get_device(config, env) | |
policy = make_policy( | |
args.algo, | |
env, | |
device, | |
load_path=model_path, | |
**config.policy_hyperparams, | |
).eval() | |
deterministic = ( | |
args.deterministic_eval | |
if args.deterministic_eval is not None | |
else config.eval_params.get("deterministic", True) | |
) | |
return Evaluation( | |
policy, | |
evaluate( | |
env, | |
policy, | |
args.n_episodes, | |
render=args.render, | |
deterministic=deterministic, | |
print_returns=not args.no_print_returns, | |
), | |
config, | |
) | |