sgoodfriend's picture
DQN playing LunarLander-v2 from https://github.com/sgoodfriend/rl-algo-impls/tree/1d4094fbcc9082de7f53f4348dd4c7c354152907
9839b09
raw
history blame
4.22 kB
import numpy as np
from dataclasses import dataclass
from torch.utils.tensorboard.writer import SummaryWriter
from typing import Dict, List, Optional, Sequence, TypeVar
@dataclass
class Episode:
score: float = 0
length: int = 0
StatisticSelf = TypeVar("StatisticSelf", bound="Statistic")
@dataclass
class Statistic:
values: np.ndarray
round_digits: int = 2
@property
def mean(self) -> float:
return np.mean(self.values).item()
@property
def std(self) -> float:
return np.std(self.values).item()
@property
def min(self) -> float:
return np.min(self.values).item()
@property
def max(self) -> float:
return np.max(self.values).item()
def sum(self) -> float:
return np.sum(self.values).item()
def __len__(self) -> int:
return len(self.values)
def _diff(self: StatisticSelf, o: StatisticSelf) -> float:
return (self.mean - self.std) - (o.mean - o.std)
def __gt__(self: StatisticSelf, o: StatisticSelf) -> bool:
return self._diff(o) > 0
def __ge__(self: StatisticSelf, o: StatisticSelf) -> bool:
return self._diff(o) >= 0
def __repr__(self) -> str:
mean = round(self.mean, self.round_digits)
std = round(self.std, self.round_digits)
if self.round_digits == 0:
mean = int(mean)
std = int(std)
return f"{mean} +/- {std}"
def to_dict(self) -> Dict[str, float]:
return {
"mean": self.mean,
"std": self.std,
"min": self.min,
"max": self.max,
}
EpisodesStatsSelf = TypeVar("EpisodesStatsSelf", bound="EpisodesStats")
class EpisodesStats:
episodes: Sequence[Episode]
simple: bool
score: Statistic
length: Statistic
def __init__(self, episodes: Sequence[Episode], simple: bool = False) -> None:
self.episodes = episodes
self.simple = simple
self.score = Statistic(np.array([e.score for e in episodes]))
self.length = Statistic(np.array([e.length for e in episodes]), round_digits=0)
def __gt__(self: EpisodesStatsSelf, o: EpisodesStatsSelf) -> bool:
return self.score > o.score
def __ge__(self: EpisodesStatsSelf, o: EpisodesStatsSelf) -> bool:
return self.score >= o.score
def __repr__(self) -> str:
return (
f"Score: {self.score} ({round(self.score.mean - self.score.std, 2)}) | "
f"Length: {self.length}"
)
def __len__(self) -> int:
return len(self.episodes)
def _asdict(self) -> dict:
return {
"n_episodes": len(self.episodes),
"score": self.score.to_dict(),
"length": self.length.to_dict(),
}
def write_to_tensorboard(
self, tb_writer: SummaryWriter, main_tag: str, global_step: Optional[int] = None
) -> None:
stats = {"mean": self.score.mean}
if not self.simple:
stats.update(
{
"min": self.score.min,
"max": self.score.max,
"result": self.score.mean - self.score.std,
"n_episodes": len(self.episodes),
}
)
tb_writer.add_scalars(
main_tag,
stats,
global_step=global_step,
)
class EpisodeAccumulator:
def __init__(self, num_envs: int):
self._episodes = []
self.current_episodes = [Episode() for _ in range(num_envs)]
@property
def episodes(self) -> List[Episode]:
return self._episodes
def step(self, reward: np.ndarray, done: np.ndarray) -> None:
for idx, current in enumerate(self.current_episodes):
current.score += reward[idx]
current.length += 1
if done[idx]:
self._episodes.append(current)
self.on_done(idx, current)
self.current_episodes[idx] = Episode()
def __len__(self) -> int:
return len(self.episodes)
def on_done(self, ep_idx: int, episode: Episode) -> None:
pass
def stats(self) -> EpisodesStats:
return EpisodesStats(self.episodes)