File size: 10,369 Bytes
7bfbe05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import gym
import numpy as np
import os

from dataclasses import asdict, astuple
from gym.vector.async_vector_env import AsyncVectorEnv
from gym.vector.sync_vector_env import SyncVectorEnv
from gym.wrappers.resize_observation import ResizeObservation
from gym.wrappers.gray_scale_observation import GrayScaleObservation
from gym.wrappers.frame_stack import FrameStack
from stable_baselines3.common.atari_wrappers import (
    MaxAndSkipEnv,
    NoopResetEnv,
)
from stable_baselines3.common.vec_env.dummy_vec_env import DummyVecEnv
from stable_baselines3.common.vec_env.subproc_vec_env import SubprocVecEnv
from stable_baselines3.common.vec_env.vec_normalize import VecNormalize
from torch.utils.tensorboard.writer import SummaryWriter
from typing import Callable, Optional

from rl_algo_impls.runner.config import Config, EnvHyperparams
from rl_algo_impls.shared.policy.policy import VEC_NORMALIZE_FILENAME
from rl_algo_impls.wrappers.atari_wrappers import (
    EpisodicLifeEnv,
    FireOnLifeStarttEnv,
    ClipRewardEnv,
)
from rl_algo_impls.wrappers.episode_record_video import EpisodeRecordVideo
from rl_algo_impls.wrappers.episode_stats_writer import EpisodeStatsWriter
from rl_algo_impls.wrappers.initial_step_truncate_wrapper import (
    InitialStepTruncateWrapper,
)
from rl_algo_impls.wrappers.is_vector_env import IsVectorEnv
from rl_algo_impls.wrappers.no_reward_timeout import NoRewardTimeout
from rl_algo_impls.wrappers.noop_env_seed import NoopEnvSeed
from rl_algo_impls.wrappers.normalize import NormalizeObservation, NormalizeReward
from rl_algo_impls.wrappers.sync_vector_env_render_compat import (
    SyncVectorEnvRenderCompat,
)
from rl_algo_impls.wrappers.transpose_image_observation import TransposeImageObservation
from rl_algo_impls.wrappers.vectorable_wrapper import VecEnv
from rl_algo_impls.wrappers.video_compat_wrapper import VideoCompatWrapper


def make_env(
    config: Config,
    hparams: EnvHyperparams,
    training: bool = True,
    render: bool = False,
    normalize_load_path: Optional[str] = None,
    tb_writer: Optional[SummaryWriter] = None,
) -> VecEnv:
    if hparams.env_type == "procgen":
        return _make_procgen_env(
            config,
            hparams,
            training=training,
            render=render,
            normalize_load_path=normalize_load_path,
            tb_writer=tb_writer,
        )
    elif hparams.env_type in {"sb3vec", "gymvec"}:
        return _make_vec_env(
            config,
            hparams,
            training=training,
            render=render,
            normalize_load_path=normalize_load_path,
            tb_writer=tb_writer,
        )
    else:
        raise ValueError(f"env_type {hparams.env_type} not supported")


def make_eval_env(
    config: Config,
    hparams: EnvHyperparams,
    override_n_envs: Optional[int] = None,
    **kwargs,
) -> VecEnv:
    kwargs = kwargs.copy()
    kwargs["training"] = False
    if override_n_envs is not None:
        hparams_kwargs = asdict(hparams)
        hparams_kwargs["n_envs"] = override_n_envs
        if override_n_envs == 1:
            hparams_kwargs["vec_env_class"] = "sync"
        hparams = EnvHyperparams(**hparams_kwargs)
    return make_env(config, hparams, **kwargs)


def _make_vec_env(
    config: Config,
    hparams: EnvHyperparams,
    training: bool = True,
    render: bool = False,
    normalize_load_path: Optional[str] = None,
    tb_writer: Optional[SummaryWriter] = None,
) -> VecEnv:
    (
        env_type,
        n_envs,
        frame_stack,
        make_kwargs,
        no_reward_timeout_steps,
        no_reward_fire_steps,
        vec_env_class,
        normalize,
        normalize_kwargs,
        rolling_length,
        train_record_video,
        video_step_interval,
        initial_steps_to_truncate,
        clip_atari_rewards,
    ) = astuple(hparams)

    if "BulletEnv" in config.env_id:
        import pybullet_envs

    spec = gym.spec(config.env_id)
    seed = config.seed(training=training)

    make_kwargs = make_kwargs.copy() if make_kwargs is not None else {}
    if "BulletEnv" in config.env_id and render:
        make_kwargs["render"] = True
    if "CarRacing" in config.env_id:
        make_kwargs["verbose"] = 0
    if "procgen" in config.env_id:
        if not render:
            make_kwargs["render_mode"] = "rgb_array"

    def make(idx: int) -> Callable[[], gym.Env]:
        def _make() -> gym.Env:
            env = gym.make(config.env_id, **make_kwargs)
            env = gym.wrappers.RecordEpisodeStatistics(env)
            env = VideoCompatWrapper(env)
            if training and train_record_video and idx == 0:
                env = EpisodeRecordVideo(
                    env,
                    config.video_prefix,
                    step_increment=n_envs,
                    video_step_interval=int(video_step_interval),
                )
            if training and initial_steps_to_truncate:
                env = InitialStepTruncateWrapper(
                    env, idx * initial_steps_to_truncate // n_envs
                )
            if "AtariEnv" in spec.entry_point:  # type: ignore
                env = NoopResetEnv(env, noop_max=30)
                env = MaxAndSkipEnv(env, skip=4)
                env = EpisodicLifeEnv(env, training=training)
                action_meanings = env.unwrapped.get_action_meanings()
                if "FIRE" in action_meanings:  # type: ignore
                    env = FireOnLifeStarttEnv(env, action_meanings.index("FIRE"))
                if clip_atari_rewards:
                    env = ClipRewardEnv(env, training=training)
                env = ResizeObservation(env, (84, 84))
                env = GrayScaleObservation(env, keep_dim=False)
                env = FrameStack(env, frame_stack)
            elif "CarRacing" in config.env_id:
                env = ResizeObservation(env, (64, 64))
                env = GrayScaleObservation(env, keep_dim=False)
                env = FrameStack(env, frame_stack)
            elif "procgen" in config.env_id:
                # env = GrayScaleObservation(env, keep_dim=False)
                env = NoopEnvSeed(env)
                env = TransposeImageObservation(env)
                if frame_stack > 1:
                    env = FrameStack(env, frame_stack)

            if no_reward_timeout_steps:
                env = NoRewardTimeout(
                    env, no_reward_timeout_steps, n_fire_steps=no_reward_fire_steps
                )

            if seed is not None:
                env.seed(seed + idx)
                env.action_space.seed(seed + idx)
                env.observation_space.seed(seed + idx)

            return env

        return _make

    if env_type == "sb3vec":
        VecEnvClass = {"sync": DummyVecEnv, "async": SubprocVecEnv}[vec_env_class]
    elif env_type == "gymvec":
        VecEnvClass = {"sync": SyncVectorEnv, "async": AsyncVectorEnv}[vec_env_class]
    else:
        raise ValueError(f"env_type {env_type} unsupported")
    envs = VecEnvClass([make(i) for i in range(n_envs)])
    if env_type == "gymvec" and vec_env_class == "sync":
        envs = SyncVectorEnvRenderCompat(envs)
    if training:
        assert tb_writer
        envs = EpisodeStatsWriter(
            envs, tb_writer, training=training, rolling_length=rolling_length
        )
    if normalize:
        normalize_kwargs = normalize_kwargs or {}
        if env_type == "sb3vec":
            if normalize_load_path:
                envs = VecNormalize.load(
                    os.path.join(normalize_load_path, VEC_NORMALIZE_FILENAME),
                    envs,  # type: ignore
                )
            else:
                envs = VecNormalize(
                    envs,  # type: ignore
                    training=training,
                    **normalize_kwargs,
                )
            if not training:
                envs.norm_reward = False
        else:
            if normalize_kwargs.get("norm_obs", True):
                envs = NormalizeObservation(
                    envs, training=training, clip=normalize_kwargs.get("clip_obs", 10.0)
                )
            if training and normalize_kwargs.get("norm_reward", True):
                envs = NormalizeReward(
                    envs,
                    training=training,
                    clip=normalize_kwargs.get("clip_reward", 10.0),
                )
    return envs


def _make_procgen_env(
    config: Config,
    hparams: EnvHyperparams,
    training: bool = True,
    render: bool = False,
    normalize_load_path: Optional[str] = None,
    tb_writer: Optional[SummaryWriter] = None,
) -> VecEnv:
    from gym3 import ViewerWrapper, ExtractDictObWrapper
    from procgen.env import ProcgenGym3Env, ToBaselinesVecEnv

    (
        _,  # env_type
        n_envs,
        _,  # frame_stack
        make_kwargs,
        _,  # no_reward_timeout_steps
        _,  # no_reward_fire_steps
        _,  # vec_env_class
        normalize,
        normalize_kwargs,
        rolling_length,
        _,  # train_record_video
        _,  # video_step_interval
        _,  # initial_steps_to_truncate
        _,  # clip_atari_rewards
    ) = astuple(hparams)

    seed = config.seed(training=training)

    make_kwargs = make_kwargs or {}
    make_kwargs["render_mode"] = "rgb_array"
    if seed is not None:
        make_kwargs["rand_seed"] = seed

    envs = ProcgenGym3Env(n_envs, config.env_id, **make_kwargs)
    envs = ExtractDictObWrapper(envs, key="rgb")
    if render:
        envs = ViewerWrapper(envs, info_key="rgb")
    envs = ToBaselinesVecEnv(envs)
    envs = IsVectorEnv(envs)
    # TODO: Handle Grayscale and/or FrameStack
    envs = TransposeImageObservation(envs)

    envs = gym.wrappers.RecordEpisodeStatistics(envs)

    if seed is not None:
        envs.action_space.seed(seed)
        envs.observation_space.seed(seed)

    if training:
        assert tb_writer
        envs = EpisodeStatsWriter(
            envs, tb_writer, training=training, rolling_length=rolling_length
        )
    if normalize and training:
        normalize_kwargs = normalize_kwargs or {}
        envs = gym.wrappers.NormalizeReward(envs)
        clip_obs = normalize_kwargs.get("clip_reward", 10.0)
        envs = gym.wrappers.TransformReward(
            envs, lambda r: np.clip(r, -clip_obs, clip_obs)
        )

    return envs  # type: ignore