sgoodfriend's picture
DQN playing MountainCar-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/2067e21d62fff5db60168687e7d9e89019a8bfc0
7bfbe05
raw
history blame
2.92 kB
import os
import shutil
from dataclasses import dataclass
from typing import NamedTuple, Optional
from rl_algo_impls.runner.env import make_eval_env
from rl_algo_impls.runner.config import Config, EnvHyperparams, Hyperparams, RunArgs
from rl_algo_impls.runner.running_utils import (
load_hyperparams,
set_seeds,
get_device,
make_policy,
)
from rl_algo_impls.shared.callbacks.eval_callback import evaluate
from rl_algo_impls.shared.policy.policy import Policy
from rl_algo_impls.shared.stats import EpisodesStats
@dataclass
class EvalArgs(RunArgs):
render: bool = True
best: bool = True
n_envs: Optional[int] = 1
n_episodes: int = 3
deterministic_eval: Optional[bool] = None
no_print_returns: bool = False
wandb_run_path: Optional[str] = None
class Evaluation(NamedTuple):
policy: Policy
stats: EpisodesStats
config: Config
def evaluate_model(args: EvalArgs, root_dir: str) -> Evaluation:
if args.wandb_run_path:
import wandb
api = wandb.Api()
run = api.run(args.wandb_run_path)
params = run.config
args.algo = params["algo"]
args.env = params["env"]
args.seed = params.get("seed", None)
args.use_deterministic_algorithms = params.get(
"use_deterministic_algorithms", True
)
config = Config(args, Hyperparams.from_dict_with_extra_fields(params), root_dir)
model_path = config.model_dir_path(best=args.best, downloaded=True)
model_archive_name = config.model_dir_name(best=args.best, extension=".zip")
run.file(model_archive_name).download()
if os.path.isdir(model_path):
shutil.rmtree(model_path)
shutil.unpack_archive(model_archive_name, model_path)
os.remove(model_archive_name)
else:
hyperparams = load_hyperparams(args.algo, args.env)
config = Config(args, hyperparams, root_dir)
model_path = config.model_dir_path(best=args.best)
print(args)
set_seeds(args.seed, args.use_deterministic_algorithms)
env = make_eval_env(
config,
EnvHyperparams(**config.env_hyperparams),
override_n_envs=args.n_envs,
render=args.render,
normalize_load_path=model_path,
)
device = get_device(config.device, env)
policy = make_policy(
args.algo,
env,
device,
load_path=model_path,
**config.policy_hyperparams,
).eval()
deterministic = (
args.deterministic_eval
if args.deterministic_eval is not None
else config.eval_params.get("deterministic", True)
)
return Evaluation(
policy,
evaluate(
env,
policy,
args.n_episodes,
render=args.render,
deterministic=deterministic,
print_returns=not args.no_print_returns,
),
config,
)