File size: 6,793 Bytes
b9803e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import itertools
import numpy as np
import os

from time import perf_counter
from torch.utils.tensorboard.writer import SummaryWriter
from typing import List, Optional, Union

from rl_algo_impls.shared.callbacks.callback import Callback
from rl_algo_impls.shared.policy.policy import Policy
from rl_algo_impls.shared.stats import Episode, EpisodeAccumulator, EpisodesStats
from rl_algo_impls.wrappers.vec_episode_recorder import VecEpisodeRecorder
from rl_algo_impls.wrappers.vectorable_wrapper import VecEnv


class EvaluateAccumulator(EpisodeAccumulator):
    def __init__(
        self,
        num_envs: int,
        goal_episodes: int,
        print_returns: bool = True,
        ignore_first_episode: bool = False,
    ):
        super().__init__(num_envs)
        self.completed_episodes_by_env_idx = [[] for _ in range(num_envs)]
        self.goal_episodes_per_env = int(np.ceil(goal_episodes / num_envs))
        self.print_returns = print_returns
        if ignore_first_episode:
            first_done = set()

            def should_record_done(idx: int) -> bool:
                has_done_first_episode = idx in first_done
                first_done.add(idx)
                return has_done_first_episode

            self.should_record_done = should_record_done
        else:
            self.should_record_done = lambda idx: True

    def on_done(self, ep_idx: int, episode: Episode) -> None:
        if (
            self.should_record_done(ep_idx)
            and len(self.completed_episodes_by_env_idx[ep_idx])
            >= self.goal_episodes_per_env
        ):
            return
        self.completed_episodes_by_env_idx[ep_idx].append(episode)
        if self.print_returns:
            print(
                f"Episode {len(self)} | "
                f"Score {episode.score} | "
                f"Length {episode.length}"
            )

    def __len__(self) -> int:
        return sum(len(ce) for ce in self.completed_episodes_by_env_idx)

    @property
    def episodes(self) -> List[Episode]:
        return list(itertools.chain(*self.completed_episodes_by_env_idx))

    def is_done(self) -> bool:
        return all(
            len(ce) == self.goal_episodes_per_env
            for ce in self.completed_episodes_by_env_idx
        )


def evaluate(
    env: VecEnv,
    policy: Policy,
    n_episodes: int,
    render: bool = False,
    deterministic: bool = True,
    print_returns: bool = True,
    ignore_first_episode: bool = False,
) -> EpisodesStats:
    policy.sync_normalization(env)
    policy.eval()

    episodes = EvaluateAccumulator(
        env.num_envs, n_episodes, print_returns, ignore_first_episode
    )

    obs = env.reset()
    while not episodes.is_done():
        act = policy.act(obs, deterministic=deterministic)
        obs, rew, done, _ = env.step(act)
        episodes.step(rew, done)
        if render:
            env.render()
    stats = EpisodesStats(episodes.episodes)
    if print_returns:
        print(stats)
    return stats


class EvalCallback(Callback):
    def __init__(
        self,
        policy: Policy,
        env: VecEnv,
        tb_writer: SummaryWriter,
        best_model_path: Optional[str] = None,
        step_freq: Union[int, float] = 50_000,
        n_episodes: int = 10,
        save_best: bool = True,
        deterministic: bool = True,
        record_best_videos: bool = True,
        video_env: Optional[VecEnv] = None,
        best_video_dir: Optional[str] = None,
        max_video_length: int = 3600,
        ignore_first_episode: bool = False,
    ) -> None:
        super().__init__()
        self.policy = policy
        self.env = env
        self.tb_writer = tb_writer
        self.best_model_path = best_model_path
        self.step_freq = int(step_freq)
        self.n_episodes = n_episodes
        self.save_best = save_best
        self.deterministic = deterministic
        self.stats: List[EpisodesStats] = []
        self.best = None

        self.record_best_videos = record_best_videos
        assert video_env or not record_best_videos
        self.video_env = video_env
        assert best_video_dir or not record_best_videos
        self.best_video_dir = best_video_dir
        if best_video_dir:
            os.makedirs(best_video_dir, exist_ok=True)
        self.max_video_length = max_video_length
        self.best_video_base_path = None

        self.ignore_first_episode = ignore_first_episode

    def on_step(self, timesteps_elapsed: int = 1) -> bool:
        super().on_step(timesteps_elapsed)
        if self.timesteps_elapsed // self.step_freq >= len(self.stats):
            self.evaluate()
        return True

    def evaluate(
        self, n_episodes: Optional[int] = None, print_returns: Optional[bool] = None
    ) -> EpisodesStats:
        start_time = perf_counter()
        eval_stat = evaluate(
            self.env,
            self.policy,
            n_episodes or self.n_episodes,
            deterministic=self.deterministic,
            print_returns=print_returns or False,
            ignore_first_episode=self.ignore_first_episode,
        )
        end_time = perf_counter()
        self.tb_writer.add_scalar(
            "eval/steps_per_second",
            eval_stat.length.sum() / (end_time - start_time),
            self.timesteps_elapsed,
        )
        self.policy.train(True)
        print(f"Eval Timesteps: {self.timesteps_elapsed} | {eval_stat}")

        self.stats.append(eval_stat)

        if not self.best or eval_stat >= self.best:
            strictly_better = not self.best or eval_stat > self.best
            self.best = eval_stat
            if self.save_best:
                assert self.best_model_path
                self.policy.save(self.best_model_path)
                print("Saved best model")
            self.best.write_to_tensorboard(
                self.tb_writer, "best_eval", self.timesteps_elapsed
            )
            if strictly_better and self.record_best_videos:
                assert self.video_env and self.best_video_dir
                self.best_video_base_path = os.path.join(
                    self.best_video_dir, str(self.timesteps_elapsed)
                )
                video_wrapped = VecEpisodeRecorder(
                    self.video_env,
                    self.best_video_base_path,
                    max_video_length=self.max_video_length,
                )
                video_stats = evaluate(
                    video_wrapped,
                    self.policy,
                    1,
                    deterministic=self.deterministic,
                    print_returns=False,
                )
                print(f"Saved best video: {video_stats}")

        eval_stat.write_to_tensorboard(self.tb_writer, "eval", self.timesteps_elapsed)

        return eval_stat