File size: 2,024 Bytes
b9803e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gym
import numpy as np

from typing import Optional, Tuple, Union

from rl_algo_impls.wrappers.vectorable_wrapper import VecotarableWrapper

ObsType = Union[np.ndarray, dict]
ActType = Union[int, float, np.ndarray, dict]


class NoRewardTimeout(VecotarableWrapper):
    def __init__(
        self, env: gym.Env, n_timeout_steps: int, n_fire_steps: Optional[int] = None
    ) -> None:
        super().__init__(env)
        self.n_timeout_steps = n_timeout_steps
        self.n_fire_steps = n_fire_steps

        self.fire_act = None
        if n_fire_steps is not None:
            action_meanings = env.unwrapped.get_action_meanings()
            assert "FIRE" in action_meanings
            self.fire_act = action_meanings.index("FIRE")

        self.steps_since_reward = 0

        self.episode_score = 0
        self.episode_step_idx = 0

    def step(self, action: ActType) -> Tuple[ObsType, float, bool, dict]:
        if self.steps_since_reward == self.n_fire_steps:
            assert self.fire_act is not None
            self.print_intervention("Force fire action")
            action = self.fire_act
        obs, rew, done, info = self.env.step(action)

        self.episode_score += rew
        self.episode_step_idx += 1

        if rew != 0 or done:
            self.steps_since_reward = 0
        else:
            self.steps_since_reward += 1
            if self.steps_since_reward >= self.n_timeout_steps:
                self.print_intervention("Early terminate")
                done = True

        return obs, rew, done, info

    def reset(self, **kwargs) -> ObsType:
        self._reset_state()
        return self.env.reset(**kwargs)

    def _reset_state(self) -> None:
        self.steps_since_reward = 0
        self.episode_score = 0
        self.episode_step_idx = 0

    def print_intervention(self, tag: str) -> None:
        print(
            f"{self.__class__.__name__}: {tag} | "
            f"Score: {self.episode_score} | "
            f"Length: {self.episode_step_idx}"
        )