PPO playing AntBulletEnv-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/2067e21d62fff5db60168687e7d9e89019a8bfc0
b9803e8
import dataclasses | |
import inspect | |
import itertools | |
import os | |
from datetime import datetime | |
from dataclasses import dataclass | |
from typing import Any, Dict, List, Optional, Type, TypeVar, Union | |
RunArgsSelf = TypeVar("RunArgsSelf", bound="RunArgs") | |
class RunArgs: | |
algo: str | |
env: str | |
seed: Optional[int] = None | |
use_deterministic_algorithms: bool = True | |
def expand_from_dict( | |
cls: Type[RunArgsSelf], d: Dict[str, Any] | |
) -> List[RunArgsSelf]: | |
maybe_listify = lambda v: [v] if isinstance(v, str) or isinstance(v, int) else v | |
algos = maybe_listify(d["algo"]) | |
envs = maybe_listify(d["env"]) | |
seeds = maybe_listify(d["seed"]) | |
args = [] | |
for algo, env, seed in itertools.product(algos, envs, seeds): | |
_d = d.copy() | |
_d.update({"algo": algo, "env": env, "seed": seed}) | |
args.append(cls(**_d)) | |
return args | |
class EnvHyperparams: | |
env_type: str = "gymvec" | |
n_envs: int = 1 | |
frame_stack: int = 1 | |
make_kwargs: Optional[Dict[str, Any]] = None | |
no_reward_timeout_steps: Optional[int] = None | |
no_reward_fire_steps: Optional[int] = None | |
vec_env_class: str = "sync" | |
normalize: bool = False | |
normalize_kwargs: Optional[Dict[str, Any]] = None | |
rolling_length: int = 100 | |
train_record_video: bool = False | |
video_step_interval: Union[int, float] = 1_000_000 | |
initial_steps_to_truncate: Optional[int] = None | |
clip_atari_rewards: bool = True | |
HyperparamsSelf = TypeVar("HyperparamsSelf", bound="Hyperparams") | |
class Hyperparams: | |
device: str = "auto" | |
n_timesteps: Union[int, float] = 100_000 | |
env_hyperparams: Dict[str, Any] = dataclasses.field(default_factory=dict) | |
policy_hyperparams: Dict[str, Any] = dataclasses.field(default_factory=dict) | |
algo_hyperparams: Dict[str, Any] = dataclasses.field(default_factory=dict) | |
eval_params: Dict[str, Any] = dataclasses.field(default_factory=dict) | |
env_id: Optional[str] = None | |
def from_dict_with_extra_fields( | |
cls: Type[HyperparamsSelf], d: Dict[str, Any] | |
) -> HyperparamsSelf: | |
return cls( | |
**{k: v for k, v in d.items() if k in inspect.signature(cls).parameters} | |
) | |
class Config: | |
args: RunArgs | |
hyperparams: Hyperparams | |
root_dir: str | |
run_id: str = datetime.now().isoformat() | |
def seed(self, training: bool = True) -> Optional[int]: | |
seed = self.args.seed | |
if training or seed is None: | |
return seed | |
return seed + self.env_hyperparams.get("n_envs", 1) | |
def device(self) -> str: | |
return self.hyperparams.device | |
def n_timesteps(self) -> int: | |
return int(self.hyperparams.n_timesteps) | |
def env_hyperparams(self) -> Dict[str, Any]: | |
return self.hyperparams.env_hyperparams | |
def policy_hyperparams(self) -> Dict[str, Any]: | |
return self.hyperparams.policy_hyperparams | |
def algo_hyperparams(self) -> Dict[str, Any]: | |
return self.hyperparams.algo_hyperparams | |
def eval_params(self) -> Dict[str, Any]: | |
return self.hyperparams.eval_params | |
def algo(self) -> str: | |
return self.args.algo | |
def env_id(self) -> str: | |
return self.hyperparams.env_id or self.args.env | |
def model_name(self, include_seed: bool = True) -> str: | |
# Use arg env name instead of environment name | |
parts = [self.algo, self.args.env] | |
if include_seed and self.args.seed is not None: | |
parts.append(f"S{self.args.seed}") | |
# Assume that the custom arg name already has the necessary information | |
if not self.hyperparams.env_id: | |
make_kwargs = self.env_hyperparams.get("make_kwargs", {}) | |
if make_kwargs: | |
for k, v in make_kwargs.items(): | |
if type(v) == bool and v: | |
parts.append(k) | |
elif type(v) == int and v: | |
parts.append(f"{k}{v}") | |
else: | |
parts.append(str(v)) | |
return "-".join(parts) | |
def run_name(self, include_seed: bool = True) -> str: | |
parts = [self.model_name(include_seed=include_seed), self.run_id] | |
return "-".join(parts) | |
def saved_models_dir(self) -> str: | |
return os.path.join(self.root_dir, "saved_models") | |
def downloaded_models_dir(self) -> str: | |
return os.path.join(self.root_dir, "downloaded_models") | |
def model_dir_name( | |
self, | |
best: bool = False, | |
extension: str = "", | |
) -> str: | |
return self.model_name() + ("-best" if best else "") + extension | |
def model_dir_path(self, best: bool = False, downloaded: bool = False) -> str: | |
return os.path.join( | |
self.saved_models_dir if not downloaded else self.downloaded_models_dir, | |
self.model_dir_name(best=best), | |
) | |
def runs_dir(self) -> str: | |
return os.path.join(self.root_dir, "runs") | |
def tensorboard_summary_path(self) -> str: | |
return os.path.join(self.runs_dir, self.run_name()) | |
def logs_path(self) -> str: | |
return os.path.join(self.runs_dir, f"log.yml") | |
def videos_dir(self) -> str: | |
return os.path.join(self.root_dir, "videos") | |
def video_prefix(self) -> str: | |
return os.path.join(self.videos_dir, self.model_name()) | |
def best_videos_dir(self) -> str: | |
return os.path.join(self.videos_dir, f"{self.model_name()}-best") | |