sgoodfriend's picture
PPO playing AntBulletEnv-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/2067e21d62fff5db60168687e7d9e89019a8bfc0
b9803e8
raw
history blame
1.54 kB
while test $# != 0
do
case "$1" in
-a) algos=$2 ;;
-j) n_jobs=$2 ;;
-p) project_name=$2 ;;
-s) seeds=$2 ;;
-e) envs=$2 ;;
--procgen) procgen=t
esac
shift
done
algos="${algos:-ppo}"
n_jobs="${n_jobs:-6}"
project_name="${project_name:-rl-algo-impls-benchmarks}"
seeds="${seeds:-1 2 3}"
DISCRETE_ENVS=(
# Basic
"CartPole-v1"
"MountainCar-v0"
"Acrobot-v1"
"LunarLander-v2"
# Atari
"PongNoFrameskip-v4"
"BreakoutNoFrameskip-v4"
"SpaceInvadersNoFrameskip-v4"
"QbertNoFrameskip-v4"
)
BOX_ENVS=(
# Basic
"MountainCarContinuous-v0"
"BipedalWalker-v3"
# PyBullet
"HalfCheetahBulletEnv-v0"
"AntBulletEnv-v0"
"HopperBulletEnv-v0"
"Walker2DBulletEnv-v0"
# CarRacing
"CarRacing-v0"
)
for algo in $(echo $algos); do
if [ "$algo" = "dqn" ]; then
BENCHMARK_ENVS="${DISCRETE_ENVS[*]}"
else
BENCHMARK_ENVS="${DISCRETE_ENVS[*]} ${BOX_ENVS[*]}"
fi
algo_envs=$envs
if [ -z $algo_envs ]; then
echo "-e unspecified; therefore, benchmark training on ${BENCHMARK_ENVS[*]}"
algo_envs=${BENCHMARK_ENVS[*]}
fi
PROCGEN_ENVS=(
"procgen-coinrun-easy"
"procgen-starpilot-easy"
"procgen-bossfight-easy"
"procgen-bigfish-easy"
)
if [ "$procgen" = "t" ]; then
algo_envs=${PROCGEN_ENVS[*]}
fi
bash scripts/train_loop.sh -a $algo -e "$algo_envs" -p $project_name -s "$seeds" | xargs -I CMD -P $n_jobs bash -c CMD
done