PPO playing CarRacing-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/fbc943f151b95afc4905a67a3835fb6b18c6a5e4
85e4a43
import numpy as np | |
import os | |
import torch | |
from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvObs | |
from typing import Sequence, TypeVar | |
from dqn.q_net import QNetwork | |
from shared.policy.policy import Policy | |
DQNPolicySelf = TypeVar("DQNPolicySelf", bound="DQNPolicy") | |
class DQNPolicy(Policy): | |
def __init__( | |
self, | |
env: VecEnv, | |
hidden_sizes: Sequence[int] = [], | |
**kwargs, | |
) -> None: | |
super().__init__(env, **kwargs) | |
self.q_net = QNetwork(env.observation_space, env.action_space, hidden_sizes) | |
def act( | |
self, obs: VecEnvObs, eps: float = 0, deterministic: bool = True | |
) -> np.ndarray: | |
assert eps == 0 if deterministic else eps >= 0 | |
if not deterministic and np.random.random() < eps: | |
return np.array( | |
[self.env.action_space.sample() for _ in range(self.env.num_envs)] | |
) | |
else: | |
with torch.no_grad(): | |
obs_th = torch.as_tensor(np.array(obs)) | |
if self.device: | |
obs_th = obs_th.to(self.device) | |
return self.q_net(obs_th).argmax(axis=1).cpu().numpy() | |