PPO playing CarRacing-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/5598ebc4b03054f16eebe76792486ba7bcacfc5c
0ca6846
import gym | |
import numpy as np | |
from collections import deque | |
from stable_baselines3.common.vec_env.base_vec_env import ( | |
VecEnvStepReturn, | |
VecEnvWrapper, | |
VecEnvObs, | |
) | |
from torch.utils.tensorboard.writer import SummaryWriter | |
from shared.stats import Episode, EpisodesStats | |
class EpisodeStatsWriter(VecEnvWrapper): | |
def __init__( | |
self, venv, tb_writer: SummaryWriter, training: bool = True, rolling_length=100 | |
): | |
super().__init__(venv) | |
self.training = training | |
self.tb_writer = tb_writer | |
self.rolling_length = rolling_length | |
self.episodes = deque(maxlen=rolling_length) | |
self.total_steps = 0 | |
self.episode_cnt = 0 | |
self.last_episode_cnt_print = 0 | |
def step_wait(self) -> VecEnvStepReturn: | |
obs, rews, dones, infos = self.venv.step_wait() | |
self.total_steps += self.venv.num_envs | |
step_episodes = [] | |
for info in infos: | |
ep_info = info.get("episode") | |
if ep_info: | |
episode = Episode(ep_info["r"], ep_info["l"]) | |
step_episodes.append(episode) | |
self.episodes.append(episode) | |
if step_episodes: | |
tag = "train" if self.training else "eval" | |
step_stats = EpisodesStats(step_episodes, simple=True) | |
step_stats.write_to_tensorboard(self.tb_writer, tag, self.total_steps) | |
rolling_stats = EpisodesStats(self.episodes) | |
rolling_stats.write_to_tensorboard( | |
self.tb_writer, f"{tag}_rolling", self.total_steps | |
) | |
self.episode_cnt += len(step_episodes) | |
if self.episode_cnt >= self.last_episode_cnt_print + self.rolling_length: | |
print( | |
f"Episode: {self.episode_cnt} | " | |
f"Steps: {self.total_steps} | " | |
f"{rolling_stats}" | |
) | |
self.last_episode_cnt_print += self.rolling_length | |
return obs, rews, dones, infos | |
def reset(self) -> VecEnvObs: | |
return self.venv.reset() | |