PPO playing HalfCheetahBulletEnv-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/983cb75e43e51cf4ef57f177194ab9a4a1a8808b
f050c92
import copy | |
import dataclasses | |
import os | |
import shutil | |
from dataclasses import dataclass | |
from typing import List, NamedTuple, Optional | |
import numpy as np | |
import wandb | |
from rl_algo_impls.runner.config import Config, EnvHyperparams, Hyperparams, RunArgs | |
from rl_algo_impls.runner.evaluate import Evaluation | |
from rl_algo_impls.runner.running_utils import ( | |
get_device, | |
load_hyperparams, | |
make_policy, | |
set_seeds, | |
) | |
from rl_algo_impls.shared.callbacks.eval_callback import evaluate | |
from rl_algo_impls.shared.vec_env import make_eval_env | |
from rl_algo_impls.wrappers.vec_episode_recorder import VecEpisodeRecorder | |
class SelfplayEvalArgs(RunArgs): | |
# Either wandb_run_paths or model_file_paths must have 2 elements in it. | |
wandb_run_paths: List[str] = dataclasses.field(default_factory=list) | |
model_file_paths: List[str] = dataclasses.field(default_factory=list) | |
render: bool = False | |
best: bool = True | |
n_envs: int = 1 | |
n_episodes: int = 1 | |
deterministic_eval: Optional[bool] = None | |
no_print_returns: bool = False | |
video_path: Optional[str] = None | |
def selfplay_evaluate(args: SelfplayEvalArgs, root_dir: str) -> Evaluation: | |
if args.wandb_run_paths: | |
api = wandb.Api() | |
args, config, player_1_model_path = load_player( | |
api, args.wandb_run_paths[0], args, root_dir | |
) | |
_, _, player_2_model_path = load_player( | |
api, args.wandb_run_paths[1], args, root_dir | |
) | |
elif args.model_file_paths: | |
hyperparams = load_hyperparams(args.algo, args.env) | |
config = Config(args, hyperparams, root_dir) | |
player_1_model_path, player_2_model_path = args.model_file_paths | |
else: | |
raise ValueError("Must specify 2 wandb_run_paths or 2 model_file_paths") | |
print(args) | |
set_seeds(args.seed, args.use_deterministic_algorithms) | |
env_make_kwargs = ( | |
config.eval_hyperparams.get("env_overrides", {}).get("make_kwargs", {}).copy() | |
) | |
env_make_kwargs["num_selfplay_envs"] = args.n_envs * 2 | |
env = make_eval_env( | |
config, | |
EnvHyperparams(**config.env_hyperparams), | |
override_hparams={ | |
"n_envs": args.n_envs, | |
"selfplay_bots": { | |
player_2_model_path: args.n_envs, | |
}, | |
"self_play_kwargs": { | |
"num_old_policies": 0, | |
"save_steps": np.inf, | |
"swap_steps": np.inf, | |
"bot_always_player_2": True, | |
}, | |
"bots": None, | |
"make_kwargs": env_make_kwargs, | |
}, | |
render=args.render, | |
normalize_load_path=player_1_model_path, | |
) | |
if args.video_path: | |
env = VecEpisodeRecorder( | |
env, args.video_path, max_video_length=18000, num_episodes=args.n_episodes | |
) | |
device = get_device(config, env) | |
policy = make_policy( | |
args.algo, | |
env, | |
device, | |
load_path=player_1_model_path, | |
**config.policy_hyperparams, | |
).eval() | |
deterministic = ( | |
args.deterministic_eval | |
if args.deterministic_eval is not None | |
else config.eval_hyperparams.get("deterministic", True) | |
) | |
return Evaluation( | |
policy, | |
evaluate( | |
env, | |
policy, | |
args.n_episodes, | |
render=args.render, | |
deterministic=deterministic, | |
print_returns=not args.no_print_returns, | |
), | |
config, | |
) | |
class PlayerData(NamedTuple): | |
args: SelfplayEvalArgs | |
config: Config | |
model_path: str | |
def load_player( | |
api: wandb.Api, run_path: str, args: SelfplayEvalArgs, root_dir: str | |
) -> PlayerData: | |
args = copy.copy(args) | |
run = api.run(run_path) | |
params = run.config | |
args.algo = params["algo"] | |
args.env = params["env"] | |
args.seed = params.get("seed", None) | |
args.use_deterministic_algorithms = params.get("use_deterministic_algorithms", True) | |
config = Config(args, Hyperparams.from_dict_with_extra_fields(params), root_dir) | |
model_path = config.model_dir_path(best=args.best, downloaded=True) | |
model_archive_name = config.model_dir_name(best=args.best, extension=".zip") | |
run.file(model_archive_name).download() | |
if os.path.isdir(model_path): | |
shutil.rmtree(model_path) | |
shutil.unpack_archive(model_archive_name, model_path) | |
os.remove(model_archive_name) | |
return PlayerData(args, config, model_path) | |