File size: 6,475 Bytes
d40beb2 c6e31cd d40beb2 c6e31cd 6d0bd78 d40beb2 6d0bd78 d40beb2 c6e31cd 6d0bd78 d40beb2 6d0bd78 d40beb2 c6e31cd d40beb2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 |
import dataclasses
import inspect
import itertools
import os
from dataclasses import dataclass
from datetime import datetime
from typing import Any, Dict, List, Optional, Type, TypeVar, Union
RunArgsSelf = TypeVar("RunArgsSelf", bound="RunArgs")
@dataclass
class RunArgs:
algo: str
env: str
seed: Optional[int] = None
use_deterministic_algorithms: bool = True
@classmethod
def expand_from_dict(
cls: Type[RunArgsSelf], d: Dict[str, Any]
) -> List[RunArgsSelf]:
maybe_listify = lambda v: [v] if isinstance(v, str) or isinstance(v, int) else v
algos = maybe_listify(d["algo"])
envs = maybe_listify(d["env"])
seeds = maybe_listify(d["seed"])
args = []
for algo, env, seed in itertools.product(algos, envs, seeds):
_d = d.copy()
_d.update({"algo": algo, "env": env, "seed": seed})
args.append(cls(**_d))
return args
@dataclass
class EnvHyperparams:
env_type: str = "gymvec"
n_envs: int = 1
frame_stack: int = 1
make_kwargs: Optional[Dict[str, Any]] = None
no_reward_timeout_steps: Optional[int] = None
no_reward_fire_steps: Optional[int] = None
vec_env_class: str = "sync"
normalize: bool = False
normalize_kwargs: Optional[Dict[str, Any]] = None
rolling_length: int = 100
train_record_video: bool = False
video_step_interval: Union[int, float] = 1_000_000
initial_steps_to_truncate: Optional[int] = None
clip_atari_rewards: bool = True
normalize_type: Optional[str] = None
mask_actions: bool = False
bots: Optional[Dict[str, int]] = None
self_play_kwargs: Optional[Dict[str, Any]] = None
selfplay_bots: Optional[Dict[str, int]] = None
HyperparamsSelf = TypeVar("HyperparamsSelf", bound="Hyperparams")
@dataclass
class Hyperparams:
device: str = "auto"
n_timesteps: Union[int, float] = 100_000
env_hyperparams: Dict[str, Any] = dataclasses.field(default_factory=dict)
policy_hyperparams: Dict[str, Any] = dataclasses.field(default_factory=dict)
algo_hyperparams: Dict[str, Any] = dataclasses.field(default_factory=dict)
eval_hyperparams: Dict[str, Any] = dataclasses.field(default_factory=dict)
env_id: Optional[str] = None
additional_keys_to_log: List[str] = dataclasses.field(default_factory=list)
microrts_reward_decay_callback: bool = False
@classmethod
def from_dict_with_extra_fields(
cls: Type[HyperparamsSelf], d: Dict[str, Any]
) -> HyperparamsSelf:
return cls(
**{k: v for k, v in d.items() if k in inspect.signature(cls).parameters}
)
@dataclass
class Config:
args: RunArgs
hyperparams: Hyperparams
root_dir: str
run_id: str = datetime.now().isoformat()
def seed(self, training: bool = True) -> Optional[int]:
seed = self.args.seed
if training or seed is None:
return seed
return seed + self.env_hyperparams.get("n_envs", 1)
@property
def device(self) -> str:
return self.hyperparams.device
@property
def n_timesteps(self) -> int:
return int(self.hyperparams.n_timesteps)
@property
def env_hyperparams(self) -> Dict[str, Any]:
return self.hyperparams.env_hyperparams
@property
def policy_hyperparams(self) -> Dict[str, Any]:
return self.hyperparams.policy_hyperparams
@property
def algo_hyperparams(self) -> Dict[str, Any]:
return self.hyperparams.algo_hyperparams
@property
def eval_hyperparams(self) -> Dict[str, Any]:
return self.hyperparams.eval_hyperparams
def eval_callback_params(self) -> Dict[str, Any]:
eval_hyperparams = self.eval_hyperparams.copy()
if "env_overrides" in eval_hyperparams:
del eval_hyperparams["env_overrides"]
return eval_hyperparams
@property
def algo(self) -> str:
return self.args.algo
@property
def env_id(self) -> str:
return self.hyperparams.env_id or self.args.env
@property
def additional_keys_to_log(self) -> List[str]:
return self.hyperparams.additional_keys_to_log
def model_name(self, include_seed: bool = True) -> str:
# Use arg env name instead of environment name
parts = [self.algo, self.args.env]
if include_seed and self.args.seed is not None:
parts.append(f"S{self.args.seed}")
# Assume that the custom arg name already has the necessary information
if not self.hyperparams.env_id:
make_kwargs = self.env_hyperparams.get("make_kwargs", {})
if make_kwargs:
for k, v in make_kwargs.items():
if type(v) == bool and v:
parts.append(k)
elif type(v) == int and v:
parts.append(f"{k}{v}")
else:
parts.append(str(v))
return "-".join(parts)
def run_name(self, include_seed: bool = True) -> str:
parts = [self.model_name(include_seed=include_seed), self.run_id]
return "-".join(parts)
@property
def saved_models_dir(self) -> str:
return os.path.join(self.root_dir, "saved_models")
@property
def downloaded_models_dir(self) -> str:
return os.path.join(self.root_dir, "downloaded_models")
def model_dir_name(
self,
best: bool = False,
extension: str = "",
) -> str:
return self.model_name() + ("-best" if best else "") + extension
def model_dir_path(self, best: bool = False, downloaded: bool = False) -> str:
return os.path.join(
self.saved_models_dir if not downloaded else self.downloaded_models_dir,
self.model_dir_name(best=best),
)
@property
def runs_dir(self) -> str:
return os.path.join(self.root_dir, "runs")
@property
def tensorboard_summary_path(self) -> str:
return os.path.join(self.runs_dir, self.run_name())
@property
def logs_path(self) -> str:
return os.path.join(self.runs_dir, f"log.yml")
@property
def videos_dir(self) -> str:
return os.path.join(self.root_dir, "videos")
@property
def video_prefix(self) -> str:
return os.path.join(self.videos_dir, self.model_name())
@property
def best_videos_dir(self) -> str:
return os.path.join(self.videos_dir, f"{self.model_name()}-best")
|