PPO playing Walker2DBulletEnv-v0 from https://github.com/sgoodfriend/rl-algo-impls/tree/2067e21d62fff5db60168687e7d9e89019a8bfc0
d40beb2
import optuna | |
from typing import Any, Dict | |
from rl_algo_impls.wrappers.vectorable_wrapper import VecEnv, single_observation_space | |
def sample_env_hyperparams( | |
trial: optuna.Trial, env_hparams: Dict[str, Any], env: VecEnv | |
) -> Dict[str, Any]: | |
obs_space = single_observation_space(env) | |
n_envs = 2 ** trial.suggest_int("n_envs_exp", 1, 5) | |
trial.set_user_attr("n_envs", n_envs) | |
env_hparams["n_envs"] = n_envs | |
normalize = trial.suggest_categorical("normalize", [False, True]) | |
env_hparams["normalize"] = normalize | |
if normalize: | |
normalize_kwargs = env_hparams.get("normalize_kwargs", {}) | |
if len(obs_space.shape) == 3: | |
normalize_kwargs.update( | |
{ | |
"norm_obs": False, | |
"norm_reward": True, | |
} | |
) | |
else: | |
norm_obs = trial.suggest_categorical("norm_obs", [True, False]) | |
norm_reward = trial.suggest_categorical("norm_reward", [True, False]) | |
normalize_kwargs.update( | |
{ | |
"norm_obs": norm_obs, | |
"norm_reward": norm_reward, | |
} | |
) | |
env_hparams["normalize_kwargs"] = normalize_kwargs | |
elif "normalize_kwargs" in env_hparams: | |
del env_hparams["normalize_kwargs"] | |
return env_hparams | |