File size: 7,279 Bytes
9dc837c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import itertools
import numpy as np
import os
from copy import deepcopy
from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvWrapper
from stable_baselines3.common.vec_env.vec_normalize import VecNormalize
from torch.utils.tensorboard.writer import SummaryWriter
from typing import List, Optional, Union
from shared.callbacks.callback import Callback
from shared.policy.policy import Policy
from shared.stats import Episode, EpisodeAccumulator, EpisodesStats
from wrappers.vec_episode_recorder import VecEpisodeRecorder
class EvaluateAccumulator(EpisodeAccumulator):
def __init__(
self,
num_envs: int,
goal_episodes: int,
print_returns: bool = True,
ignore_first_episode: bool = False,
):
super().__init__(num_envs)
self.completed_episodes_by_env_idx = [[] for _ in range(num_envs)]
self.goal_episodes_per_env = int(np.ceil(goal_episodes / num_envs))
self.print_returns = print_returns
if ignore_first_episode:
first_done = set()
def should_record_done(idx: int) -> bool:
has_done_first_episode = idx in first_done
first_done.add(idx)
return has_done_first_episode
self.should_record_done = should_record_done
else:
self.should_record_done = lambda idx: True
def on_done(self, ep_idx: int, episode: Episode) -> None:
if (
self.should_record_done(ep_idx)
and len(self.completed_episodes_by_env_idx[ep_idx])
>= self.goal_episodes_per_env
):
return
self.completed_episodes_by_env_idx[ep_idx].append(episode)
if self.print_returns:
print(
f"Episode {len(self)} | "
f"Score {episode.score} | "
f"Length {episode.length}"
)
def __len__(self) -> int:
return sum(len(ce) for ce in self.completed_episodes_by_env_idx)
@property
def episodes(self) -> List[Episode]:
return list(itertools.chain(*self.completed_episodes_by_env_idx))
def is_done(self) -> bool:
return all(
len(ce) == self.goal_episodes_per_env
for ce in self.completed_episodes_by_env_idx
)
def evaluate(
env: VecEnv,
policy: Policy,
n_episodes: int,
render: bool = False,
deterministic: bool = True,
print_returns: bool = True,
ignore_first_episode: bool = False,
) -> EpisodesStats:
policy.eval()
episodes = EvaluateAccumulator(
env.num_envs, n_episodes, print_returns, ignore_first_episode
)
obs = env.reset()
while not episodes.is_done():
act = policy.act(obs, deterministic=deterministic)
obs, rew, done, _ = env.step(act)
episodes.step(rew, done)
if render:
env.render()
stats = EpisodesStats(episodes.episodes)
if print_returns:
print(stats)
return stats
class EvalCallback(Callback):
def __init__(
self,
policy: Policy,
env: VecEnv,
tb_writer: SummaryWriter,
best_model_path: Optional[str] = None,
step_freq: Union[int, float] = 50_000,
n_episodes: int = 10,
save_best: bool = True,
deterministic: bool = True,
record_best_videos: bool = True,
video_env: Optional[VecEnv] = None,
best_video_dir: Optional[str] = None,
max_video_length: int = 3600,
ignore_first_episode: bool = False,
) -> None:
super().__init__()
self.policy = policy
self.env = env
self.tb_writer = tb_writer
self.best_model_path = best_model_path
self.step_freq = int(step_freq)
self.n_episodes = n_episodes
self.save_best = save_best
self.deterministic = deterministic
self.stats: List[EpisodesStats] = []
self.best = None
self.record_best_videos = record_best_videos
assert video_env or not record_best_videos
self.video_env = video_env
assert best_video_dir or not record_best_videos
self.best_video_dir = best_video_dir
if best_video_dir:
os.makedirs(best_video_dir, exist_ok=True)
self.max_video_length = max_video_length
self.best_video_base_path = None
self.ignore_first_episode = ignore_first_episode
def on_step(self, timesteps_elapsed: int = 1) -> bool:
super().on_step(timesteps_elapsed)
if self.timesteps_elapsed // self.step_freq >= len(self.stats):
sync_vec_normalize(self.policy.vec_normalize, self.env)
self.evaluate()
return True
def evaluate(
self, n_episodes: Optional[int] = None, print_returns: Optional[bool] = None
) -> EpisodesStats:
eval_stat = evaluate(
self.env,
self.policy,
n_episodes or self.n_episodes,
deterministic=self.deterministic,
print_returns=print_returns or False,
ignore_first_episode=self.ignore_first_episode,
)
self.policy.train(True)
print(f"Eval Timesteps: {self.timesteps_elapsed} | {eval_stat}")
self.stats.append(eval_stat)
if not self.best or eval_stat >= self.best:
strictly_better = not self.best or eval_stat > self.best
self.best = eval_stat
if self.save_best:
assert self.best_model_path
self.policy.save(self.best_model_path)
print("Saved best model")
self.best.write_to_tensorboard(
self.tb_writer, "best_eval", self.timesteps_elapsed
)
if strictly_better and self.record_best_videos:
assert self.video_env and self.best_video_dir
sync_vec_normalize(self.policy.vec_normalize, self.video_env)
self.best_video_base_path = os.path.join(
self.best_video_dir, str(self.timesteps_elapsed)
)
video_wrapped = VecEpisodeRecorder(
self.video_env,
self.best_video_base_path,
max_video_length=self.max_video_length,
)
video_stats = evaluate(
video_wrapped,
self.policy,
1,
deterministic=self.deterministic,
print_returns=False,
)
print(f"Saved best video: {video_stats}")
eval_stat.write_to_tensorboard(self.tb_writer, "eval", self.timesteps_elapsed)
return eval_stat
def sync_vec_normalize(
origin_vec_normalize: Optional[VecNormalize], destination_env: VecEnv
) -> None:
if origin_vec_normalize is not None:
eval_env_wrapper = destination_env
while isinstance(eval_env_wrapper, VecEnvWrapper):
if isinstance(eval_env_wrapper, VecNormalize):
if hasattr(origin_vec_normalize, "obs_rms"):
eval_env_wrapper.obs_rms = deepcopy(origin_vec_normalize.obs_rms)
eval_env_wrapper.ret_rms = deepcopy(origin_vec_normalize.ret_rms)
eval_env_wrapper = eval_env_wrapper.venv
|