File size: 6,845 Bytes
10ca8cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import gym
import numpy as np
import torch

from abc import abstractmethod
from gym.spaces import Box, Discrete, Space
from stable_baselines3.common.vec_env.base_vec_env import VecEnv, VecEnvObs
from typing import NamedTuple, Optional, Sequence, Tuple, TypeVar

from shared.module.feature_extractor import FeatureExtractor
from shared.policy.actor import PiForward, StateDependentNoiseActorHead, actor_head
from shared.policy.critic import CriticHead
from shared.policy.policy import ACTIVATION, Policy


class Step(NamedTuple):
    a: np.ndarray
    v: np.ndarray
    logp_a: np.ndarray
    clamped_a: np.ndarray


class ACForward(NamedTuple):
    logp_a: torch.Tensor
    entropy: torch.Tensor
    v: torch.Tensor


FEAT_EXT_FILE_NAME = "feat_ext.pt"
V_FEAT_EXT_FILE_NAME = "v_feat_ext.pt"
PI_FILE_NAME = "pi.pt"
V_FILE_NAME = "v.pt"
ActorCriticSelf = TypeVar("ActorCriticSelf", bound="ActorCritic")


def clamp_actions(
    actions: np.ndarray, action_space: gym.Space, squash_output: bool
) -> np.ndarray:
    if isinstance(action_space, Box):
        low, high = action_space.low, action_space.high  # type: ignore
        if squash_output:
            # Squashed output is already between -1 and 1. Rescale if the actual
            # output needs to something other than -1 and 1
            return low + 0.5 * (actions + 1) * (high - low)
        else:
            return np.clip(actions, low, high)
    return actions


def default_hidden_sizes(obs_space: Space) -> Sequence[int]:
    if isinstance(obs_space, Box):
        if len(obs_space.shape) == 3:
            # By default feature extractor to output has no hidden layers
            return []
        elif len(obs_space.shape) == 1:
            return [64, 64]
        else:
            raise ValueError(f"Unsupported observation space: {obs_space}")
    elif isinstance(obs_space, Discrete):
        return [64]
    else:
        raise ValueError(f"Unsupported observation space: {obs_space}")


class OnPolicy(Policy):
    @abstractmethod
    def value(self, obs: VecEnvObs) -> np.ndarray:
        ...

    @abstractmethod
    def step(self, obs: VecEnvObs) -> Step:
        ...


class ActorCritic(OnPolicy):
    def __init__(
        self,
        env: VecEnv,
        pi_hidden_sizes: Sequence[int],
        v_hidden_sizes: Sequence[int],
        init_layers_orthogonal: bool = True,
        activation_fn: str = "tanh",
        log_std_init: float = -0.5,
        use_sde: bool = False,
        full_std: bool = True,
        squash_output: bool = False,
        share_features_extractor: bool = True,
        cnn_feature_dim: int = 512,
        cnn_style: str = "nature",
        cnn_layers_init_orthogonal: Optional[bool] = None,
        **kwargs,
    ) -> None:
        super().__init__(env, **kwargs)
        activation = ACTIVATION[activation_fn]
        observation_space = env.observation_space
        self.action_space = env.action_space
        self.squash_output = squash_output
        self.share_features_extractor = share_features_extractor
        self._feature_extractor = FeatureExtractor(
            observation_space,
            activation,
            init_layers_orthogonal=init_layers_orthogonal,
            cnn_feature_dim=cnn_feature_dim,
            cnn_style=cnn_style,
            cnn_layers_init_orthogonal=cnn_layers_init_orthogonal,
        )
        self._pi = actor_head(
            self.action_space,
            (self._feature_extractor.out_dim,) + tuple(pi_hidden_sizes),
            init_layers_orthogonal,
            activation,
            log_std_init=log_std_init,
            use_sde=use_sde,
            full_std=full_std,
            squash_output=squash_output,
        )

        if not share_features_extractor:
            self._v_feature_extractor = FeatureExtractor(
                observation_space,
                activation,
                init_layers_orthogonal=init_layers_orthogonal,
                cnn_feature_dim=cnn_feature_dim,
                cnn_style=cnn_style,
                cnn_layers_init_orthogonal=cnn_layers_init_orthogonal,
            )
            v_hidden_sizes = (self._v_feature_extractor.out_dim,) + tuple(
                v_hidden_sizes
            )
        else:
            self._v_feature_extractor = None
            v_hidden_sizes = (self._feature_extractor.out_dim,) + tuple(v_hidden_sizes)
        self._v = CriticHead(
            hidden_sizes=v_hidden_sizes,
            activation=activation,
            init_layers_orthogonal=init_layers_orthogonal,
        )

    def _pi_forward(
        self, obs: torch.Tensor, action: Optional[torch.Tensor] = None
    ) -> Tuple[PiForward, torch.Tensor]:
        p_fe = self._feature_extractor(obs)
        pi_forward = self._pi(p_fe, action)

        return pi_forward, p_fe

    def _v_forward(self, obs: torch.Tensor, p_fc: torch.Tensor) -> torch.Tensor:
        v_fe = self._v_feature_extractor(obs) if self._v_feature_extractor else p_fc
        return self._v(v_fe)

    def forward(self, obs: torch.Tensor, action: torch.Tensor) -> ACForward:
        (_, logp_a, entropy), p_fc = self._pi_forward(obs, action)
        v = self._v_forward(obs, p_fc)

        assert logp_a is not None
        assert entropy is not None
        return ACForward(logp_a, entropy, v)

    def value(self, obs: VecEnvObs) -> np.ndarray:
        o = self._as_tensor(obs)
        with torch.no_grad():
            fe = (
                self._v_feature_extractor(o)
                if self._v_feature_extractor
                else self._feature_extractor(o)
            )
            v = self._v(fe)
        return v.cpu().numpy()

    def step(self, obs: VecEnvObs) -> Step:
        o = self._as_tensor(obs)
        with torch.no_grad():
            (pi, _, _), p_fc = self._pi_forward(o)
            a = pi.sample()
            logp_a = pi.log_prob(a)

            v = self._v_forward(o, p_fc)

        a_np = a.cpu().numpy()
        clamped_a_np = clamp_actions(a_np, self.action_space, self.squash_output)
        return Step(a_np, v.cpu().numpy(), logp_a.cpu().numpy(), clamped_a_np)

    def act(self, obs: np.ndarray, deterministic: bool = True) -> np.ndarray:
        if not deterministic:
            return self.step(obs).clamped_a
        else:
            o = self._as_tensor(obs)
            with torch.no_grad():
                (pi, _, _), _ = self._pi_forward(o)
                a = pi.mode
            return clamp_actions(a.cpu().numpy(), self.action_space, self.squash_output)

    def load(self, path: str) -> None:
        super().load(path)
        self.reset_noise()

    def reset_noise(self, batch_size: Optional[int] = None) -> None:
        if isinstance(self._pi, StateDependentNoiseActorHead):
            self._pi.sample_weights(
                batch_size=batch_size if batch_size else self.env.num_envs
            )