sguarnaccio
commited on
Commit
·
0d39895
1
Parent(s):
647b45a
Upload clf_ner.py
Browse files- clf_ner.py +84 -0
clf_ner.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BertPreTrainedModel
|
2 |
+
from typing import List
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
import numpy as np
|
6 |
+
from transformers import AutoTokenizer,BertModel
|
7 |
+
|
8 |
+
class ClassifierNER(BertPreTrainedModel):
|
9 |
+
def __init__(self,config):
|
10 |
+
super(ClassifierNER,self).__init__(config)
|
11 |
+
self.bert = BertModel(config, add_pooling_layer=True)
|
12 |
+
self.tokenizer = AutoTokenizer.from_pretrained(config.tokenizer)
|
13 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
14 |
+
self.loss_fct = nn.CrossEntropyLoss()
|
15 |
+
# set classifier layer
|
16 |
+
self.clf_labels= config.clf_labels
|
17 |
+
self.clf_classes = len(self.clf_labels)
|
18 |
+
self.clf_linear = nn.Linear(config.hidden_size,self.clf_classes)
|
19 |
+
#set ner layer
|
20 |
+
self.ner_labels = config.ner_labels
|
21 |
+
self.ner_classes = len(self.ner_labels)
|
22 |
+
self.ner_linear = nn.Linear(config.hidden_size,self.ner_classes)
|
23 |
+
self.ner_lstm = nn.LSTM(config.hidden_size,config.hidden_size//2,dropout=config.hidden_dropout_prob,batch_first=True,bidirectional=True)
|
24 |
+
def forward(self,input_ids,token_type_ids,attention_mask,clf_labels=None,ner_labels=None,**kwargs):
|
25 |
+
outputs = self.bert(input_ids=input_ids,attention_mask=attention_mask,token_type_ids=token_type_ids,**kwargs)
|
26 |
+
clf_output = outputs[1]
|
27 |
+
clf_output = self.dropout(clf_output)
|
28 |
+
clf_logits = self.clf_linear(clf_output)
|
29 |
+
clf_loss = 0
|
30 |
+
if clf_labels is not None:
|
31 |
+
clf_labels_tensor = torch.tensor(clf_labels, dtype=torch.long)
|
32 |
+
clf_loss = self.loss_fct(clf_logits.view(-1, self.clf_classes), clf_labels_tensor.view(-1))
|
33 |
+
ner_output = outputs[0]
|
34 |
+
ner_output = self.dropout(ner_output)
|
35 |
+
lstm_output,hc = self.ner_lstm(ner_output)
|
36 |
+
ner_logits = self.ner_linear(lstm_output)
|
37 |
+
ner_loss = 0
|
38 |
+
if ner_labels is not None:
|
39 |
+
ner_loss = self.loss_fct(ner_logits.view(-1,self.ner_classes),ner_labels.view(-1))
|
40 |
+
if clf_labels is not None or ner_labels is not None:
|
41 |
+
loss = clf_loss + ner_loss
|
42 |
+
return loss, clf_logits, ner_logits
|
43 |
+
else:
|
44 |
+
return clf_logits,ner_logits
|
45 |
+
def predict(self,text):
|
46 |
+
with torch.no_grad():
|
47 |
+
tokenized = self.tokenizer.encode_plus(text,truncation=True,max_length=512,return_tensors="pt",return_offsets_mapping=True)
|
48 |
+
clf_prediction,ner_prediction = self(tokenized['input_ids'],tokenized['token_type_ids'],tokenized['attention_mask'])
|
49 |
+
clf_prediction = self.clf_labels[str(torch.argmax(clf_prediction,dim=-1).item())]
|
50 |
+
ner_prediction = self.align_predictions(text,ner_prediction,tokenized['offset_mapping'])
|
51 |
+
return {"classification":clf_prediction,"entities":ner_prediction}
|
52 |
+
def align_predictions(self,text,predictions,offsets):
|
53 |
+
results = []
|
54 |
+
predictions = torch.argmax(predictions,dim=-1)[0].tolist()
|
55 |
+
offsets = offsets[0].tolist()
|
56 |
+
idx = 0
|
57 |
+
while idx < len(predictions):
|
58 |
+
pred = predictions[idx]
|
59 |
+
label = self.ner_labels[str(pred)]
|
60 |
+
if label != "O":
|
61 |
+
# Remove the B- or I-
|
62 |
+
label = label[2:]
|
63 |
+
start, end = offsets[idx]
|
64 |
+
# Grab all the tokens labeled with I-label
|
65 |
+
idx += 1
|
66 |
+
while (
|
67 |
+
idx < len(predictions)
|
68 |
+
and self.ner_labels[str(predictions[idx])] == f"I-{label}"
|
69 |
+
):
|
70 |
+
_, end = offsets[idx]
|
71 |
+
idx += 1
|
72 |
+
|
73 |
+
# The score is the mean of all the scores of the tokens in that grouped entity
|
74 |
+
word = text[start:end]
|
75 |
+
results.append(
|
76 |
+
{
|
77 |
+
"label": label,
|
78 |
+
"entity": word,
|
79 |
+
"start": start,
|
80 |
+
"end": end,
|
81 |
+
}
|
82 |
+
)
|
83 |
+
idx += 1
|
84 |
+
return results
|