update
Browse files
README.md
CHANGED
@@ -5,4 +5,34 @@ language:
|
|
5 |
base_model:
|
6 |
- openai/whisper-small
|
7 |
pipeline_tag: automatic-speech-recognition
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
base_model:
|
6 |
- openai/whisper-small
|
7 |
pipeline_tag: automatic-speech-recognition
|
8 |
+
|
9 |
+
---
|
10 |
+
```py
|
11 |
+
|
12 |
+
import os
|
13 |
+
import librosa
|
14 |
+
import torch, torchaudio
|
15 |
+
import numpy as np
|
16 |
+
from transformers import WhisperTokenizer ,WhisperProcessor, WhisperFeatureExtractor, WhisperForConditionalGeneration
|
17 |
+
model_path_ = "sha1779/BengaliRegionalASR"
|
18 |
+
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
19 |
+
feature_extractor = WhisperFeatureExtractor.from_pretrained(model_path_)
|
20 |
+
tokenizer = WhisperTokenizer.from_pretrained(model_path_)
|
21 |
+
processor = WhisperProcessor.from_pretrained(model_path_)
|
22 |
+
model = WhisperForConditionalGeneration.from_pretrained(model_path_).to(device)
|
23 |
+
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="bengali", task="transcribe")
|
24 |
+
|
25 |
+
mp3_path = "/kaggle/input/barishal-data/valid_barishal (104).wav"
|
26 |
+
speech_array, sampling_rate = librosa.load(mp3_path, sr=16000)
|
27 |
+
|
28 |
+
speech_array = librosa.resample(np.asarray(speech_array), orig_sr=sampling_rate, target_sr=16000)
|
29 |
+
input_features = feature_extractor(speech_array, sampling_rate=16000, return_tensors="pt").input_features
|
30 |
+
|
31 |
+
predicted_ids = model.generate(inputs=input_features.to(device))[0]
|
32 |
+
|
33 |
+
transcription = processor.decode(predicted_ids, skip_special_tokens=True)
|
34 |
+
|
35 |
+
print(transcription)
|
36 |
+
|
37 |
+
|
38 |
+
```
|