--- license: apache-2.0 language: - bn base_model: - openai/whisper-small pipeline_tag: automatic-speech-recognition --- BengaliRegionalASR trained on bengali regional dialact dataset. [sha1779/Bengali_Regional_dataset](https://huggingface.co/datasets/sha1779/Bengali_Regional_dataset) This model is trained on this barishal regional data only. The dataset is taken from [ভাষা-বিচিত্রা: ASR for Regional Dialects](https://www.kaggle.com/competitions/ben10) competition. # Try the model ```bash !pip install librosa torch torchaudio transformers ``` ```py import os import librosa import torch, torchaudio import numpy as np from transformers import WhisperTokenizer ,WhisperProcessor, WhisperFeatureExtractor, WhisperForConditionalGeneration model_path_ = "sha1779/BengaliRegionalASR" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') feature_extractor = WhisperFeatureExtractor.from_pretrained(model_path_) tokenizer = WhisperTokenizer.from_pretrained(model_path_) processor = WhisperProcessor.from_pretrained(model_path_) model = WhisperForConditionalGeneration.from_pretrained(model_path_).to(device) model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="bengali", task="transcribe") mp3_path = "https://huggingface.co/sha1779/BengaliRegionalASR/resolve/main/Mp3/valid_barishal%20(1).wav" speech_array, sampling_rate = librosa.load(mp3_path, sr=16000) speech_array = librosa.resample(np.asarray(speech_array), orig_sr=sampling_rate, target_sr=16000) input_features = feature_extractor(speech_array, sampling_rate=16000, return_tensors="pt").input_features predicted_ids = model.generate(inputs=input_features.to(device))[0] transcription = processor.decode(predicted_ids, skip_special_tokens=True) print(transcription) ``` ## For larger audio , more than 30s ```py import os import librosa import torch, torchaudio import numpy as np from transformers import WhisperTokenizer ,WhisperProcessor, WhisperFeatureExtractor, WhisperForConditionalGeneration model_path_ = "sha1779/BengaliRegionalASR" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') feature_extractor = WhisperFeatureExtractor.from_pretrained(model_path_) tokenizer = WhisperTokenizer.from_pretrained(model_path_) processor = WhisperProcessor.from_pretrained(model_path_) model = WhisperForConditionalGeneration.from_pretrained(model_path_).to(device) model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="bengali", task="transcribe") mp3_path = "https://huggingface.co/sha1779/BengaliRegionalASR/resolve/main/Mp3/valid_barishal%20(1).wav" speech_array, sampling_rate = librosa.load(mp3_path, sr=16000) # Split audio into 30-second chunks with 5-second overlap chunk_duration = 30 # seconds overlap = 5 # seconds chunk_size = int(chunk_duration * sampling_rate) overlap_size = int(overlap * sampling_rate) chunks = [] for start in range(0, len(speech_array), chunk_size - overlap_size): end = start + chunk_size chunk = speech_array[start:end] chunks.append(chunk) # Process each chunk transcriptions = [] for i, chunk in enumerate(chunks): # Resample and extract features chunk = librosa.resample(np.asarray(chunk), orig_sr=sampling_rate, target_sr=16000) input_features = feature_extractor(chunk, sampling_rate=16000, return_tensors="pt").input_features # Generate transcription predicted_ids = model.generate(inputs=input_features.to(device))[0] transcription = processor.decode(predicted_ids, skip_special_tokens=True) print(transcription,end=" ") ``` # Evaluation Word Error Rate 0.65 %