--- license: apache-2.0 language: - bn base_model: - openai/whisper-small pipeline_tag: automatic-speech-recognition --- BengaliRegionalASR trained on bengali regional dialact dataset. # Try the model ```py import os import librosa import torch, torchaudio import numpy as np from transformers import WhisperTokenizer ,WhisperProcessor, WhisperFeatureExtractor, WhisperForConditionalGeneration model_path_ = "sha1779/BengaliRegionalASR" device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') feature_extractor = WhisperFeatureExtractor.from_pretrained(model_path_) tokenizer = WhisperTokenizer.from_pretrained(model_path_) processor = WhisperProcessor.from_pretrained(model_path_) model = WhisperForConditionalGeneration.from_pretrained(model_path_).to(device) model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="bengali", task="transcribe") mp3_path = "https://huggingface.co/sha1779/BengaliRegionalASR/resolve/main/Mp3/common_voice_bn_31617644.mp3" speech_array, sampling_rate = librosa.load(mp3_path, sr=16000) speech_array = librosa.resample(np.asarray(speech_array), orig_sr=sampling_rate, target_sr=16000) input_features = feature_extractor(speech_array, sampling_rate=16000, return_tensors="pt").input_features predicted_ids = model.generate(inputs=input_features.to(device))[0] transcription = processor.decode(predicted_ids, skip_special_tokens=True) print(transcription) ``` # Evaluation Word Error Rate 0.65 %