shacea commited on
Commit
247e75f
·
verified ·
1 Parent(s): 1eace0f

Model card auto-generated by SimpleTuner

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -30,10 +30,10 @@ A smiling girl whose name is Seoyeon.
30
  ## Validation settings
31
  - CFG: `3.5`
32
  - CFG Rescale: `0.0`
33
- - Steps: `30`
34
  - Sampler: `None`
35
  - Seed: `42`
36
- - Resolution: `512`
37
 
38
  Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
39
 
@@ -48,9 +48,9 @@ You may reuse the base model text encoder for inference.
48
 
49
  ## Training settings
50
 
51
- - Training epochs: 1999
52
- - Training steps: 2000
53
- - Learning rate: 1e-05
54
  - Effective batch size: 4
55
  - Micro-batch size: 1
56
  - Gradient accumulation steps: 2
@@ -72,7 +72,7 @@ You may reuse the base model text encoder for inference.
72
  - Repeats: 0
73
  - Total number of images: ~4
74
  - Total number of aspect buckets: 1
75
- - Resolution: 512 px
76
  - Cropped: True
77
  - Crop style: center
78
  - Crop aspect: square
@@ -96,10 +96,10 @@ prompt = "A smiling girl whose name is Seoyeon."
96
  pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
97
  image = pipeline(
98
  prompt=prompt,
99
- num_inference_steps=30,
100
  generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
101
- width=512,
102
- height=512,
103
  guidance_scale=3.5,
104
  ).images[0]
105
  image.save("output.png", format="PNG")
 
30
  ## Validation settings
31
  - CFG: `3.5`
32
  - CFG Rescale: `0.0`
33
+ - Steps: `28`
34
  - Sampler: `None`
35
  - Seed: `42`
36
+ - Resolution: `1024`
37
 
38
  Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
39
 
 
48
 
49
  ## Training settings
50
 
51
+ - Training epochs: 4999
52
+ - Training steps: 5000
53
+ - Learning rate: 0.0001
54
  - Effective batch size: 4
55
  - Micro-batch size: 1
56
  - Gradient accumulation steps: 2
 
72
  - Repeats: 0
73
  - Total number of images: ~4
74
  - Total number of aspect buckets: 1
75
+ - Resolution: 1024 px
76
  - Cropped: True
77
  - Crop style: center
78
  - Crop aspect: square
 
96
  pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
97
  image = pipeline(
98
  prompt=prompt,
99
+ num_inference_steps=28,
100
  generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
101
+ width=1024,
102
+ height=1024,
103
  guidance_scale=3.5,
104
  ).images[0]
105
  image.save("output.png", format="PNG")