Model card auto-generated by SimpleTuner
Browse files
README.md
CHANGED
@@ -30,10 +30,10 @@ A smiling girl whose name is Seoyeon.
|
|
30 |
## Validation settings
|
31 |
- CFG: `3.5`
|
32 |
- CFG Rescale: `0.0`
|
33 |
-
- Steps: `
|
34 |
- Sampler: `None`
|
35 |
- Seed: `42`
|
36 |
-
- Resolution: `
|
37 |
|
38 |
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
|
39 |
|
@@ -48,9 +48,9 @@ You may reuse the base model text encoder for inference.
|
|
48 |
|
49 |
## Training settings
|
50 |
|
51 |
-
- Training epochs:
|
52 |
-
- Training steps:
|
53 |
-
- Learning rate:
|
54 |
- Effective batch size: 4
|
55 |
- Micro-batch size: 1
|
56 |
- Gradient accumulation steps: 2
|
@@ -72,7 +72,7 @@ You may reuse the base model text encoder for inference.
|
|
72 |
- Repeats: 0
|
73 |
- Total number of images: ~4
|
74 |
- Total number of aspect buckets: 1
|
75 |
-
- Resolution:
|
76 |
- Cropped: True
|
77 |
- Crop style: center
|
78 |
- Crop aspect: square
|
@@ -96,10 +96,10 @@ prompt = "A smiling girl whose name is Seoyeon."
|
|
96 |
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
|
97 |
image = pipeline(
|
98 |
prompt=prompt,
|
99 |
-
num_inference_steps=
|
100 |
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
|
101 |
-
width=
|
102 |
-
height=
|
103 |
guidance_scale=3.5,
|
104 |
).images[0]
|
105 |
image.save("output.png", format="PNG")
|
|
|
30 |
## Validation settings
|
31 |
- CFG: `3.5`
|
32 |
- CFG Rescale: `0.0`
|
33 |
+
- Steps: `28`
|
34 |
- Sampler: `None`
|
35 |
- Seed: `42`
|
36 |
+
- Resolution: `1024`
|
37 |
|
38 |
Note: The validation settings are not necessarily the same as the [training settings](#training-settings).
|
39 |
|
|
|
48 |
|
49 |
## Training settings
|
50 |
|
51 |
+
- Training epochs: 4999
|
52 |
+
- Training steps: 5000
|
53 |
+
- Learning rate: 0.0001
|
54 |
- Effective batch size: 4
|
55 |
- Micro-batch size: 1
|
56 |
- Gradient accumulation steps: 2
|
|
|
72 |
- Repeats: 0
|
73 |
- Total number of images: ~4
|
74 |
- Total number of aspect buckets: 1
|
75 |
+
- Resolution: 1024 px
|
76 |
- Cropped: True
|
77 |
- Crop style: center
|
78 |
- Crop aspect: square
|
|
|
96 |
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
|
97 |
image = pipeline(
|
98 |
prompt=prompt,
|
99 |
+
num_inference_steps=28,
|
100 |
generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
|
101 |
+
width=1024,
|
102 |
+
height=1024,
|
103 |
guidance_scale=3.5,
|
104 |
).images[0]
|
105 |
image.save("output.png", format="PNG")
|