Upload 8 files
Browse files- README.md +216 -1
- adapter_config.json +32 -0
- adapter_model.safetensors +3 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scheduler.pt +3 -0
- trainer_state.json +300 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,3 +1,218 @@
|
|
1 |
---
|
2 |
-
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
library_name: peft
|
3 |
+
base_model: mistralai/Mistral-7B-v0.1
|
4 |
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
200 |
+
|
201 |
+
|
202 |
+
## Training procedure
|
203 |
+
|
204 |
+
The following `bitsandbytes` quantization config was used during training:
|
205 |
+
- quant_method: bitsandbytes
|
206 |
+
- load_in_8bit: False
|
207 |
+
- load_in_4bit: True
|
208 |
+
- llm_int8_threshold: 6.0
|
209 |
+
- llm_int8_skip_modules: None
|
210 |
+
- llm_int8_enable_fp32_cpu_offload: False
|
211 |
+
- llm_int8_has_fp16_weight: False
|
212 |
+
- bnb_4bit_quant_type: nf4
|
213 |
+
- bnb_4bit_use_double_quant: True
|
214 |
+
- bnb_4bit_compute_dtype: bfloat16
|
215 |
+
|
216 |
+
### Framework versions
|
217 |
+
|
218 |
+
- PEFT 0.6.3.dev0
|
adapter_config.json
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha_pattern": {},
|
3 |
+
"auto_mapping": null,
|
4 |
+
"base_model_name_or_path": "mistralai/Mistral-7B-v0.1",
|
5 |
+
"bias": "none",
|
6 |
+
"fan_in_fan_out": false,
|
7 |
+
"inference_mode": true,
|
8 |
+
"init_lora_weights": true,
|
9 |
+
"layers_pattern": null,
|
10 |
+
"layers_to_transform": null,
|
11 |
+
"loftq_config": {},
|
12 |
+
"lora_alpha": 16,
|
13 |
+
"lora_dropout": 0.05,
|
14 |
+
"megatron_config": null,
|
15 |
+
"megatron_core": "megatron.core",
|
16 |
+
"modules_to_save": null,
|
17 |
+
"peft_type": "LORA",
|
18 |
+
"r": 8,
|
19 |
+
"rank_pattern": {},
|
20 |
+
"revision": null,
|
21 |
+
"target_modules": [
|
22 |
+
"down_proj",
|
23 |
+
"gate_proj",
|
24 |
+
"q_proj",
|
25 |
+
"v_proj",
|
26 |
+
"o_proj",
|
27 |
+
"k_proj",
|
28 |
+
"up_proj",
|
29 |
+
"lm_head"
|
30 |
+
],
|
31 |
+
"task_type": "CAUSAL_LM"
|
32 |
+
}
|
adapter_model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91a3cfa2a2622ef978f21043a95a5683c9c133068344b8ce3798d55c84bf6c6b
|
3 |
+
size 609389712
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:669ead5e6c2d4e4d4a880e3bcfa9fb8fe17284793c4545cffcd0864f736aecdd
|
3 |
+
size 43127132
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1575b6cd4b082a5f2959edf357f5bf17e65f7756a963eead9feaa93dfcf50805
|
3 |
+
size 14244
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b4d6d865d6518a82dd54bb09f8f02628ebe31ca8be097a65ef5c8faff7622969
|
3 |
+
size 1064
|
trainer_state.json
ADDED
@@ -0,0 +1,300 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 1.567398119122257,
|
5 |
+
"eval_steps": 50,
|
6 |
+
"global_step": 1000,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.08,
|
13 |
+
"learning_rate": 2.3869346733668342e-05,
|
14 |
+
"loss": 0.7793,
|
15 |
+
"step": 50
|
16 |
+
},
|
17 |
+
{
|
18 |
+
"epoch": 0.08,
|
19 |
+
"eval_loss": 0.27101635932922363,
|
20 |
+
"eval_runtime": 141.469,
|
21 |
+
"eval_samples_per_second": 5.047,
|
22 |
+
"eval_steps_per_second": 0.636,
|
23 |
+
"step": 50
|
24 |
+
},
|
25 |
+
{
|
26 |
+
"epoch": 0.16,
|
27 |
+
"learning_rate": 2.2613065326633167e-05,
|
28 |
+
"loss": 0.2453,
|
29 |
+
"step": 100
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"epoch": 0.16,
|
33 |
+
"eval_loss": 0.21987898647785187,
|
34 |
+
"eval_runtime": 142.8952,
|
35 |
+
"eval_samples_per_second": 4.997,
|
36 |
+
"eval_steps_per_second": 0.63,
|
37 |
+
"step": 100
|
38 |
+
},
|
39 |
+
{
|
40 |
+
"epoch": 0.24,
|
41 |
+
"learning_rate": 2.135678391959799e-05,
|
42 |
+
"loss": 0.2079,
|
43 |
+
"step": 150
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"epoch": 0.24,
|
47 |
+
"eval_loss": 0.19277334213256836,
|
48 |
+
"eval_runtime": 142.7101,
|
49 |
+
"eval_samples_per_second": 5.003,
|
50 |
+
"eval_steps_per_second": 0.631,
|
51 |
+
"step": 150
|
52 |
+
},
|
53 |
+
{
|
54 |
+
"epoch": 0.31,
|
55 |
+
"learning_rate": 2.0100502512562815e-05,
|
56 |
+
"loss": 0.1836,
|
57 |
+
"step": 200
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"epoch": 0.31,
|
61 |
+
"eval_loss": 0.179254949092865,
|
62 |
+
"eval_runtime": 143.1949,
|
63 |
+
"eval_samples_per_second": 4.986,
|
64 |
+
"eval_steps_per_second": 0.629,
|
65 |
+
"step": 200
|
66 |
+
},
|
67 |
+
{
|
68 |
+
"epoch": 0.39,
|
69 |
+
"learning_rate": 1.884422110552764e-05,
|
70 |
+
"loss": 0.1762,
|
71 |
+
"step": 250
|
72 |
+
},
|
73 |
+
{
|
74 |
+
"epoch": 0.39,
|
75 |
+
"eval_loss": 0.1739482283592224,
|
76 |
+
"eval_runtime": 142.441,
|
77 |
+
"eval_samples_per_second": 5.013,
|
78 |
+
"eval_steps_per_second": 0.632,
|
79 |
+
"step": 250
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"epoch": 0.47,
|
83 |
+
"learning_rate": 1.7587939698492464e-05,
|
84 |
+
"loss": 0.1692,
|
85 |
+
"step": 300
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 0.47,
|
89 |
+
"eval_loss": 0.16870561242103577,
|
90 |
+
"eval_runtime": 141.3005,
|
91 |
+
"eval_samples_per_second": 5.053,
|
92 |
+
"eval_steps_per_second": 0.637,
|
93 |
+
"step": 300
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"epoch": 0.55,
|
97 |
+
"learning_rate": 1.6331658291457288e-05,
|
98 |
+
"loss": 0.1657,
|
99 |
+
"step": 350
|
100 |
+
},
|
101 |
+
{
|
102 |
+
"epoch": 0.55,
|
103 |
+
"eval_loss": 0.1669251173734665,
|
104 |
+
"eval_runtime": 141.02,
|
105 |
+
"eval_samples_per_second": 5.063,
|
106 |
+
"eval_steps_per_second": 0.638,
|
107 |
+
"step": 350
|
108 |
+
},
|
109 |
+
{
|
110 |
+
"epoch": 0.63,
|
111 |
+
"learning_rate": 1.507537688442211e-05,
|
112 |
+
"loss": 0.1681,
|
113 |
+
"step": 400
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"epoch": 0.63,
|
117 |
+
"eval_loss": 0.1648036390542984,
|
118 |
+
"eval_runtime": 140.8855,
|
119 |
+
"eval_samples_per_second": 5.068,
|
120 |
+
"eval_steps_per_second": 0.639,
|
121 |
+
"step": 400
|
122 |
+
},
|
123 |
+
{
|
124 |
+
"epoch": 0.71,
|
125 |
+
"learning_rate": 1.3819095477386935e-05,
|
126 |
+
"loss": 0.1576,
|
127 |
+
"step": 450
|
128 |
+
},
|
129 |
+
{
|
130 |
+
"epoch": 0.71,
|
131 |
+
"eval_loss": 0.16245362162590027,
|
132 |
+
"eval_runtime": 141.4143,
|
133 |
+
"eval_samples_per_second": 5.049,
|
134 |
+
"eval_steps_per_second": 0.636,
|
135 |
+
"step": 450
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 0.78,
|
139 |
+
"learning_rate": 1.2562814070351759e-05,
|
140 |
+
"loss": 0.1656,
|
141 |
+
"step": 500
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"epoch": 0.78,
|
145 |
+
"eval_loss": 0.1608215868473053,
|
146 |
+
"eval_runtime": 141.5918,
|
147 |
+
"eval_samples_per_second": 5.043,
|
148 |
+
"eval_steps_per_second": 0.636,
|
149 |
+
"step": 500
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"epoch": 0.86,
|
153 |
+
"learning_rate": 1.1306532663316583e-05,
|
154 |
+
"loss": 0.1517,
|
155 |
+
"step": 550
|
156 |
+
},
|
157 |
+
{
|
158 |
+
"epoch": 0.86,
|
159 |
+
"eval_loss": 0.1596228927373886,
|
160 |
+
"eval_runtime": 142.7115,
|
161 |
+
"eval_samples_per_second": 5.003,
|
162 |
+
"eval_steps_per_second": 0.631,
|
163 |
+
"step": 550
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"epoch": 0.94,
|
167 |
+
"learning_rate": 1.0050251256281408e-05,
|
168 |
+
"loss": 0.1561,
|
169 |
+
"step": 600
|
170 |
+
},
|
171 |
+
{
|
172 |
+
"epoch": 0.94,
|
173 |
+
"eval_loss": 0.15880218148231506,
|
174 |
+
"eval_runtime": 143.3712,
|
175 |
+
"eval_samples_per_second": 4.98,
|
176 |
+
"eval_steps_per_second": 0.628,
|
177 |
+
"step": 600
|
178 |
+
},
|
179 |
+
{
|
180 |
+
"epoch": 1.02,
|
181 |
+
"learning_rate": 8.793969849246232e-06,
|
182 |
+
"loss": 0.1473,
|
183 |
+
"step": 650
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"epoch": 1.02,
|
187 |
+
"eval_loss": 0.15745262801647186,
|
188 |
+
"eval_runtime": 143.6929,
|
189 |
+
"eval_samples_per_second": 4.969,
|
190 |
+
"eval_steps_per_second": 0.626,
|
191 |
+
"step": 650
|
192 |
+
},
|
193 |
+
{
|
194 |
+
"epoch": 1.1,
|
195 |
+
"learning_rate": 7.537688442211055e-06,
|
196 |
+
"loss": 0.1488,
|
197 |
+
"step": 700
|
198 |
+
},
|
199 |
+
{
|
200 |
+
"epoch": 1.1,
|
201 |
+
"eval_loss": 0.1574247181415558,
|
202 |
+
"eval_runtime": 142.725,
|
203 |
+
"eval_samples_per_second": 5.003,
|
204 |
+
"eval_steps_per_second": 0.631,
|
205 |
+
"step": 700
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"epoch": 1.18,
|
209 |
+
"learning_rate": 6.2814070351758795e-06,
|
210 |
+
"loss": 0.1468,
|
211 |
+
"step": 750
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"epoch": 1.18,
|
215 |
+
"eval_loss": 0.1565464437007904,
|
216 |
+
"eval_runtime": 141.7942,
|
217 |
+
"eval_samples_per_second": 5.035,
|
218 |
+
"eval_steps_per_second": 0.635,
|
219 |
+
"step": 750
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"epoch": 1.25,
|
223 |
+
"learning_rate": 5.025125628140704e-06,
|
224 |
+
"loss": 0.1379,
|
225 |
+
"step": 800
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"epoch": 1.25,
|
229 |
+
"eval_loss": 0.1558983027935028,
|
230 |
+
"eval_runtime": 141.5337,
|
231 |
+
"eval_samples_per_second": 5.045,
|
232 |
+
"eval_steps_per_second": 0.636,
|
233 |
+
"step": 800
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"epoch": 1.33,
|
237 |
+
"learning_rate": 3.7688442211055276e-06,
|
238 |
+
"loss": 0.1414,
|
239 |
+
"step": 850
|
240 |
+
},
|
241 |
+
{
|
242 |
+
"epoch": 1.33,
|
243 |
+
"eval_loss": 0.15601229667663574,
|
244 |
+
"eval_runtime": 141.5594,
|
245 |
+
"eval_samples_per_second": 5.044,
|
246 |
+
"eval_steps_per_second": 0.636,
|
247 |
+
"step": 850
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"epoch": 1.41,
|
251 |
+
"learning_rate": 2.512562814070352e-06,
|
252 |
+
"loss": 0.1377,
|
253 |
+
"step": 900
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"epoch": 1.41,
|
257 |
+
"eval_loss": 0.15548652410507202,
|
258 |
+
"eval_runtime": 141.6005,
|
259 |
+
"eval_samples_per_second": 5.042,
|
260 |
+
"eval_steps_per_second": 0.636,
|
261 |
+
"step": 900
|
262 |
+
},
|
263 |
+
{
|
264 |
+
"epoch": 1.49,
|
265 |
+
"learning_rate": 1.256281407035176e-06,
|
266 |
+
"loss": 0.1463,
|
267 |
+
"step": 950
|
268 |
+
},
|
269 |
+
{
|
270 |
+
"epoch": 1.49,
|
271 |
+
"eval_loss": 0.1545386165380478,
|
272 |
+
"eval_runtime": 141.6136,
|
273 |
+
"eval_samples_per_second": 5.042,
|
274 |
+
"eval_steps_per_second": 0.636,
|
275 |
+
"step": 950
|
276 |
+
},
|
277 |
+
{
|
278 |
+
"epoch": 1.57,
|
279 |
+
"learning_rate": 0.0,
|
280 |
+
"loss": 0.1441,
|
281 |
+
"step": 1000
|
282 |
+
},
|
283 |
+
{
|
284 |
+
"epoch": 1.57,
|
285 |
+
"eval_loss": 0.15440967679023743,
|
286 |
+
"eval_runtime": 142.3851,
|
287 |
+
"eval_samples_per_second": 5.015,
|
288 |
+
"eval_steps_per_second": 0.632,
|
289 |
+
"step": 1000
|
290 |
+
}
|
291 |
+
],
|
292 |
+
"logging_steps": 50,
|
293 |
+
"max_steps": 1000,
|
294 |
+
"num_input_tokens_seen": 0,
|
295 |
+
"num_train_epochs": 2,
|
296 |
+
"save_steps": 50,
|
297 |
+
"total_flos": 1.7525216609776435e+17,
|
298 |
+
"trial_name": null,
|
299 |
+
"trial_params": null
|
300 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e88c0f0b3b10fb1a56a707ae66f31d85d520f5372588f0832238608286ca4f9f
|
3 |
+
size 4664
|