shafire commited on
Commit
2f26c6b
1 Parent(s): 857007c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +83 -3
README.md CHANGED
@@ -1,3 +1,83 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ ---
6
+ tags:
7
+ - autotrain
8
+ - text-generation-inference
9
+ - text-generation
10
+ - peft
11
+ library_name: transformers
12
+ base_model: meta-llama/Meta-Llama-3.1-8B
13
+ widget:
14
+ - messages:
15
+ - role: user
16
+ content: What challenges do you enjoy solving?
17
+ license: apache-2.0
18
+ ---
19
+
20
+ **SpectraMind Quantum LLM** **GGUF-Compatible and Fully Optimized**
21
+
22
+ ![SpectraMind](https://huggingface.co/shafire/SpectraMind/resolve/main/spectramind.png)
23
+
24
+ SpectraMind is an advanced, multi-layered language model built with quantum-inspired data processing techniques. Trained on custom datasets with unique quantum reasoning enhancements, SpectraMind integrates ethical decision-making frameworks with deep problem-solving capabilities, handling complex, multi-dimensional tasks with precision.
25
+
26
+ ![SpectraMind Performance](https://huggingface.co/shafire/SpectraMind/resolve/main/performance_chart.png)
27
+
28
+ <a href="https://www.youtube.com/watch?v=xyz123">Watch Our Model in Action</a>
29
+
30
+ **Use Cases**:
31
+ This model is ideal for advanced NLP tasks, including ethical decision-making, multi-variable reasoning, and comprehensive problem-solving in quantum and mathematical contexts.
32
+
33
+ **Key Highlights of SpectraMind:**
34
+
35
+ - **Quantum-Enhanced Reasoning**: Designed for tackling complex ethical questions and multi-layered logic problems, SpectraMind applies quantum-math techniques in AI for nuanced solutions.
36
+ - **Refined Dataset Curation**: Data was refined over multiple iterations, focusing on clarity and consistency, to align with SpectraMind's quantum-based reasoning.
37
+ - **Iterative Training**: The model underwent extensive testing phases to ensure accurate and reliable responses.
38
+ - **Optimized for CPU Inference**: Compatible with web UIs and desktop interfaces like `oobabooga` and `lm studio`, and performs well in self-hosted environments for CPU-only setups.
39
+
40
+ **Model Overview**
41
+
42
+ - **Developer**: Shafaet Brady Hussain - [ResearchForum](https://researchforum.online)
43
+ - **Funded by**: [Researchforum.online](https://researchforum.online)
44
+ - **Language**: English
45
+ - **Model Type**: Causal Language Model
46
+ - **Base Model**: LLaMA 3.1 8B (Meta)
47
+ - **License**: Apache-2.0
48
+
49
+ **Usage**: Run on any web interface or as a bot for self-hosted solutions. Designed to run smoothly on CPU.
50
+
51
+ **Tested on CPU - Ideal for Local and Self-Hosted Environments**
52
+
53
+ AGENT INTERFACE DETAILS:
54
+ ![SpectraMind Agent Interface](https://huggingface.co/shafire/SpectraMind/resolve/main/interface_screenshot.png)
55
+
56
+ ---
57
+
58
+ ### Usage Code Example:
59
+
60
+ You can load and interact with SpectraMind using the following code snippet:
61
+
62
+ ```python
63
+ from transformers import AutoModelForCausalLM, AutoTokenizer
64
+
65
+ model_path = "PATH_TO_THIS_REPO"
66
+
67
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
68
+ model = AutoModelForCausalLM.from_pretrained(
69
+ model_path,
70
+ device_map="auto",
71
+ torch_dtype="auto"
72
+ ).eval()
73
+
74
+ # Example prompt
75
+ messages = [
76
+ {"role": "user", "content": "What challenges do you enjoy solving?"}
77
+ ]
78
+
79
+ input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors="pt")
80
+ output_ids = model.generate(input_ids.to("cuda"))
81
+ response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
82
+
83
+ print(response) # Prints the model's response