--- library_name: transformers license: cc-by-nc-4.0 base_model: MCG-NJU/videomae-base tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: videomae-base-finetuned-ucf-crimevbinaryv5 results: [] --- # videomae-base-finetuned-ucf-crimevbinaryv5 This model is a fine-tuned version of [MCG-NJU/videomae-base](https://huggingface.co/MCG-NJU/videomae-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5233 - Accuracy: 0.8730 - Precision: 0.8739 - Recall: 0.8730 - Auc: 0.9382 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5298 | 1.0 | 173 | 0.4598 | 0.7952 | 0.8100 | 0.7952 | 0.8607 | | 0.3824 | 2.0 | 346 | 0.3941 | 0.8434 | 0.8456 | 0.8434 | 0.9138 | | 0.4836 | 3.0 | 519 | 0.5244 | 0.8032 | 0.8348 | 0.8032 | 0.9153 | | 0.5522 | 4.0 | 692 | 0.6005 | 0.7149 | 0.8064 | 0.7149 | 0.8669 | | 0.3953 | 5.0 | 865 | 0.5102 | 0.8474 | 0.8512 | 0.8474 | 0.9071 | | 0.4682 | 6.0 | 1038 | 0.5437 | 0.8715 | 0.8765 | 0.8715 | 0.9211 | | 0.2755 | 7.0 | 1211 | 0.7215 | 0.8434 | 0.8668 | 0.8434 | 0.9279 | | 0.0752 | 8.0 | 1384 | 0.8213 | 0.8554 | 0.8697 | 0.8554 | 0.9166 | | 0.0448 | 9.0 | 1557 | 0.8370 | 0.8554 | 0.8571 | 0.8554 | 0.8999 | | 0.0122 | 10.0 | 1730 | 0.7837 | 0.8715 | 0.8718 | 0.8715 | 0.9109 | | 0.0294 | 11.0 | 1903 | 0.8141 | 0.8715 | 0.8718 | 0.8715 | 0.9079 | ### Framework versions - Transformers 4.47.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3