File size: 2,697 Bytes
a93c45e
9e77dc2
 
a93c45e
 
 
 
 
 
9bc7370
 
a93c45e
 
 
 
 
9e77dc2
a93c45e
 
 
9bc7370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a93c45e
 
 
 
 
 
 
 
 
 
 
 
9e77dc2
a93c45e
 
 
9e77dc2
a93c45e
9e77dc2
a93c45e
 
 
9bc7370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a93c45e
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
license: mit
base_model: TheBloke/zephyr-7B-beta-GPTQ
tags:
- generated_from_trainer
model-index:
- name: KUETLLM_zephyr
  results: []
---
KUETLLM is a [zephyr7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) finetune, using a dataset with prompts and answers about Khulna University of Engineering and Technology.
It was loaded in 8 bit quantization using [bitsandbytes](https://github.com/TimDettmers/bitsandbytes). [LORA](https://huggingface.co/docs/diffusers/main/en/training/lora) was used to finetune an adapter, which was leter merged with the base unquantized model.
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# KUETLLM_zephyr

This model is a fine-tuned version of [TheBloke/zephyr-7B-beta-GPTQ](https://huggingface.co/TheBloke/zephyr-7B-beta-GPTQ) on the None dataset.

## Model description

Below is the training configuarations for the finetuning process:
```
LoraConfig:
r=16,
lora_alpha=16,
target_modules=["q_proj", "v_proj","k_proj","o_proj","gate_proj","up_proj","down_proj"],
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM"
```
```
TrainingArguments:
per_device_train_batch_size=12,
gradient_accumulation_steps=1,
optim='paged_adamw_8bit',
learning_rate=5e-06 ,
fp16=True,            
logging_steps=10,
num_train_epochs = 1,
output_dir=zephyr_lora_output,
remove_unused_columns=False,
```


## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 24
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 96
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP

### Inference
```
def process_data_sample(example):
    processed_example = "<|system|>\nYou are a KUET authority managed chatbot, help users by answering their queries about KUET.\n<|user|>\n" + example + "\n<|assistant|>\n"
    return processed_example

inp_str = process_data_sample("Tell me about KUET.")
inputs = tokenizer(inp_str, return_tensors="pt")
generation_config = GenerationConfig(
    do_sample=True,
    top_k=1,
    temperature=0.1,
    max_new_tokens=256,
    pad_token_id=tokenizer.eos_token_id
)

outputs = model.generate(**inputs, generation_config=generation_config)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```



### Framework versions

- Transformers 4.36.0.dev0
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0