--- license: mit base_model: TheBloke/zephyr-7B-beta-GPTQ tags: - generated_from_trainer model-index: - name: KUETLLM_zephyr results: [] --- KUETLLM is a [zephyr7b-beta](https://huggingface.co/HuggingFaceH4/zephyr-7b-beta) finetune, using a dataset with prompts and answers about Khulna University of Engineering and Technology. It was loaded in 8 bit quantization using [bitsandbytes](https://github.com/TimDettmers/bitsandbytes). [LORA](https://huggingface.co/docs/diffusers/main/en/training/lora) was used to finetune an adapter, which was leter merged with the base unquantized model. # KUETLLM_zephyr This model is a fine-tuned version of [TheBloke/zephyr-7B-beta-GPTQ](https://huggingface.co/TheBloke/zephyr-7B-beta-GPTQ) on the None dataset. ## Model description Below is the training configuarations for the finetuning process: ``` LoraConfig: r=16, lora_alpha=16, target_modules=["q_proj", "v_proj","k_proj","o_proj","gate_proj","up_proj","down_proj"], lora_dropout=0.05, bias="none", task_type="CAUSAL_LM" ``` ``` TrainingArguments: per_device_train_batch_size=12, gradient_accumulation_steps=1, optim='paged_adamw_8bit', learning_rate=5e-06 , fp16=True, logging_steps=10, num_train_epochs = 1, output_dir=zephyr_lora_output, remove_unused_columns=False, ``` ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 24 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 96 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Inference ``` def process_data_sample(example): processed_example = "<|system|>\nYou are a KUET authority managed chatbot, help users by answering their queries about KUET.\n<|user|>\n" + example + "\n<|assistant|>\n" return processed_example inp_str = process_data_sample("Tell me about KUET.") inputs = tokenizer(inp_str, return_tensors="pt") generation_config = GenerationConfig( do_sample=True, top_k=1, temperature=0.1, max_new_tokens=256, pad_token_id=tokenizer.eos_token_id ) outputs = model.generate(**inputs, generation_config=generation_config) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.15.0 - Tokenizers 0.15.0