File size: 9,532 Bytes
a4cfa39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import argparse
import json
import os
import shutil

import torch


"""
Sample usage:

    ```
    python src/transformers/models/llama/convert_llama_weights_to_hf.py \
        --input_dir /path/to/downloaded/llama/weights --model_size 7B --output_dir /output/path
    ```

Thereafter, models can be loaded via:

    ```
    tokenizer = transformers.LLaMATokenizer.from_pretrained("/output/path/tokenizer/")

    model = transformers.LLaMAForCausalLM.from_pretrained("/output/path/llama-7b/")
    ```
"""

INTERMEDIATE_SIZE_MAP = {
    "7B": 11008,
    "13B": 13824,
    "30B": 17920,
    "65B": 22016,
}
NUM_SHARDS = {
    "7B": 1,
    "13B": 2,
    "30B": 4,
    "65B": 8,
}


def read_json(path):
    with open(path, "r") as f:
        return json.loads(f.read())


def write_json(text, path):
    with open(path, "w") as f:
        f.write(json.dumps(text))


def write_model(model_path, input_base_path, model_size):
    assert model_size in INTERMEDIATE_SIZE_MAP
    os.makedirs(model_path, exist_ok=True)

    params = read_json(os.path.join(input_base_path, "params.json"))
    num_shards = NUM_SHARDS[model_size]
    n_layers = params["n_layers"]
    n_heads = params["n_heads"]
    n_heads_per_shard = n_heads // num_shards
    dim = params["dim"]
    dims_per_head = dim // n_heads

    # Load weights
    if model_size == "7B":
        # Not shared
        # (The sharded implementation would also work, but this is simpler.)
        loaded = torch.load(os.path.join(input_base_path, "consolidated.00.pth"), map_location="cpu")
    else:
        # Sharded
        loaded = [
            torch.load(os.path.join(input_base_path, f"consolidated.{i:02d}.pth"), map_location="cpu")
            for i in range(num_shards)
        ]
    param_count = 0
    index_dict = {"weight_map": {}}
    for layer_i in range(n_layers):
        filename = "pytorch_model-{:05d}-of-{:05d}.bin".format(
            layer_i,
            n_layers + 1,
        )
        if model_size == "7B":
            # Unsharded
            state_dict = {
                f"model.decoder.layers.{layer_i}.self_attn.q_proj.weight": loaded[
                    f"layers.{layer_i}.attention.wq.weight"
                ],
                f"model.decoder.layers.{layer_i}.self_attn.k_proj.weight": loaded[
                    f"layers.{layer_i}.attention.wk.weight"
                ],
                f"model.decoder.layers.{layer_i}.self_attn.v_proj.weight": loaded[
                    f"layers.{layer_i}.attention.wv.weight"
                ],
                f"model.decoder.layers.{layer_i}.self_attn.o_proj.weight": loaded[
                    f"layers.{layer_i}.attention.wo.weight"
                ],
                f"model.decoder.layers.{layer_i}.feed_forward.w1.weight": loaded[
                    f"layers.{layer_i}.feed_forward.w1.weight"
                ],
                f"model.decoder.layers.{layer_i}.feed_forward.w2.weight": loaded[
                    f"layers.{layer_i}.feed_forward.w2.weight"
                ],
                f"model.decoder.layers.{layer_i}.feed_forward.w3.weight": loaded[
                    f"layers.{layer_i}.feed_forward.w3.weight"
                ],
                f"model.decoder.layers.{layer_i}.attention_norm.weight": loaded[
                    f"layers.{layer_i}.attention_norm.weight"
                ],
                f"model.decoder.layers.{layer_i}.ffn_norm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"],
            }
        else:
            # Sharded
            state_dict = {
                f"model.decoder.layers.{layer_i}.attention_norm.weight": loaded[0][
                    f"layers.{layer_i}.attention_norm.weight"
                ],
                f"model.decoder.layers.{layer_i}.ffn_norm.weight": loaded[0][f"layers.{layer_i}.ffn_norm.weight"],
            }
            state_dict[f"model.decoder.layers.{layer_i}.self_attn.q_proj.weight"] = torch.cat(
                [
                    loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(n_heads_per_shard, dims_per_head, dim)
                    for i in range(num_shards)
                ],
                dim=0,
            ).reshape(dim, dim)
            state_dict[f"model.decoder.layers.{layer_i}.self_attn.k_proj.weight"] = torch.cat(
                [
                    loaded[i][f"layers.{layer_i}.attention.wk.weight"].view(n_heads_per_shard, dims_per_head, dim)
                    for i in range(num_shards)
                ],
                dim=0,
            ).reshape(dim, dim)
            state_dict[f"model.decoder.layers.{layer_i}.self_attn.v_proj.weight"] = torch.cat(
                [
                    loaded[i][f"layers.{layer_i}.attention.wv.weight"].view(n_heads_per_shard, dims_per_head, dim)
                    for i in range(num_shards)
                ],
                dim=0,
            ).reshape(dim, dim)

            state_dict[f"model.decoder.layers.{layer_i}.self_attn.o_proj.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(num_shards)], dim=1
            )
            state_dict[f"model.decoder.layers.{layer_i}.feed_forward.w1.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(num_shards)], dim=0
            )
            state_dict[f"model.decoder.layers.{layer_i}.feed_forward.w2.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(num_shards)], dim=1
            )
            state_dict[f"model.decoder.layers.{layer_i}.feed_forward.w3.weight"] = torch.cat(
                [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(num_shards)], dim=0
            )

        for k, v in state_dict.items():
            index_dict["weight_map"][k] = filename
            param_count += v.numel()
        torch.save(state_dict, os.path.join(model_path, filename))

    filename = "pytorch_model-{:05d}-of-{:05d}.bin".format(
        n_layers,
        n_layers + 1,
    )
    if model_size == "7B":
        # Unsharded
        state_dict = {
            "model.decoder.embed_tokens.weight": loaded["tok_embeddings.weight"],
            "model.decoder.norm.weight": loaded["norm.weight"],
            "lm_head.weight": loaded["output.weight"],
        }
    else:
        state_dict = {
            "model.decoder.norm.weight": loaded[0]["norm.weight"],
            "model.decoder.embed_tokens.weight": torch.cat(
                [loaded[i]["tok_embeddings.weight"] for i in range(num_shards)], dim=1
            ),
            "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(num_shards)], dim=0),
        }

    for k, v in state_dict.items():
        index_dict["weight_map"][k] = filename
        param_count += v.numel()
    torch.save(state_dict, os.path.join(model_path, filename))

    # Write configs
    index_dict["metadata"] = {"total_size": param_count * 2}
    write_json(index_dict, os.path.join(model_path, "pytorch_model.bin.index.json"))
    config_out = {
        "architectures": ["LLaMAForCausalLM"],
        "bos_token_id": 0,
        "eos_token_id": 1,
        "hidden_act": "silu",
        "hidden_size": params["dim"],
        "intermediate_size": INTERMEDIATE_SIZE_MAP[model_size],
        "initializer_range": 0.02,
        "max_sequence_length": 2048,
        "model_type": "llama",
        "num_attention_heads": params["n_heads"],
        "num_hidden_layers": params["n_layers"],
        "pad_token_id": -1,
        "rms_norm_eps": params["norm_eps"],
        "torch_dtype": "float16",
        "transformers_version": "4.27.0.dev0",
        "use_cache": True,
        "vocab_size": 32000,
    }
    write_json(
        config_out,
        os.path.join(model_path, "config.json"),
    )
    generation_config = {
        "_from_model_config": True,
        "bos_token_id": 0,
        "eos_token_id": 1,
        "pad_token_id": -1,
        "transformers_version": "4.27.0.dev0",
    }
    write_json(
        generation_config,
        os.path.join(model_path, "generation_config.json"),
    )


def write_tokenizer(tokenizer_path, input_tokenizer_path):
    os.makedirs(tokenizer_path, exist_ok=True)
    write_json({}, os.path.join(tokenizer_path, "special_tokens_map.json"))
    write_json(
        {
            "bos_token": "",
            "eos_token": "",
            "model_max_length": int(1e30),
            "tokenizer_class": "LLaMATokenizer",
            "unk_token": "",
        },
        os.path.join(tokenizer_path, "tokenizer_config.json"),
    )
    shutil.copyfile(input_tokenizer_path, os.path.join(tokenizer_path, "tokenizer.model"))


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--input_dir",
        help="Location of LLaMA weights, which contains tokenizer.model and model folders",
    )
    parser.add_argument(
        "--model_size",
        choices=["7B", "13B", "30B", "65B"],
    )
    parser.add_argument(
        "--output_dir",
        help="Location to write HF model and tokenizer",
    )
    args = parser.parse_args()
    write_model(
        model_path=os.path.join(args.output_dir, "llama-{}".format(args.model_size).lower()),
        input_base_path=os.path.join(args.input_dir, args.model_size),
        model_size=args.model_size,
    )
    write_tokenizer(
        tokenizer_path=os.path.join(args.output_dir, "tokenizer"),
        input_tokenizer_path=os.path.join(args.input_dir, "tokenizer.model"),
    )


if __name__ == "__main__":
    main()