--- tags: - merge - mergekit - lazymergekit - winninghealth/WiNGPT2-Llama-3-8B-Base - johnsnowlabs/JSL-MedLlama-3-8B-v1.0 base_model: - winninghealth/WiNGPT2-Llama-3-8B-Base - johnsnowlabs/JSL-MedLlama-3-8B-v1.0 license: llama3 language: - zh - en - fr --- # llama3-8B-slerp-med-chinese llama3-8B-slerp-med-chinese is a merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [winninghealth/WiNGPT2-Llama-3-8B-Base](https://huggingface.co/winninghealth/WiNGPT2-Llama-3-8B-Base) * [johnsnowlabs/JSL-MedLlama-3-8B-v1.0](https://huggingface.co/johnsnowlabs/JSL-MedLlama-3-8B-v1.0) ## 🧩 Configuration ```yaml slices: - sources: - model: winninghealth/WiNGPT2-Llama-3-8B-Base layer_range: [0,32] - model: johnsnowlabs/JSL-MedLlama-3-8B-v1.0 layer_range: [0,32] merge_method: slerp base_model: winninghealth/WiNGPT2-Llama-3-8B-Base parameters: t: - filter: self_attn value: [0, 0.5, 0.5, 0.5, 1] - filter: mlp value: [1, 0.5, 0.5, 0.5, 0] - value: 0.5 dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "shanchen/llama3-8B-slerp-med-chinese" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```