--- license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer datasets: - audiofolder metrics: - wer model-index: - name: whisper-base-finetuned-500v2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: test args: default metrics: - name: Wer type: wer value: 83.78378378378379 --- # whisper-base-finetuned-500v2 This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 1.0286 - Wer Ortho: 83.7838 - Wer: 83.7838 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:--------:|:----:|:---------------:|:---------:|:-------:| | 0.0004 | 33.3333 | 100 | 1.0012 | 81.0811 | 81.0811 | | 0.0001 | 66.6667 | 200 | 1.0110 | 78.3784 | 78.3784 | | 0.0001 | 100.0 | 300 | 1.0186 | 78.3784 | 78.3784 | | 0.0 | 133.3333 | 400 | 1.0241 | 81.0811 | 81.0811 | | 0.0 | 166.6667 | 500 | 1.0286 | 83.7838 | 83.7838 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1